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Structural transition in chiral nematic liquid crystal droplets in an electric field

J. Bajc and S. Zˇumer
Department of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

~Received 23 September 1996!

Director fields in droplets of chiral nematic~cholesteric! liquid crystals with negative dielectric anisotropy
exposed to an electric field are modeled. Field induced continuous transitions from low-field structures with
spherical chiral nematic surfaces to high-field structures with planar chiral nematic surfaces via intermediate
structures with oblate chiral surfaces are discussed. Depending on initial spherical structures, three possible
transitions are analyzed. Numerically modeled evolution of the intermediate structures, obtained by the free-
energy considerations and model director fields, agrees very well with the published observations by Crooker
and co-workers.@S1063-651X~97!00603-X#

PACS number~s!: 64.70.Md, 61.30.Cz, 61.30.Jf
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I. INTRODUCTION

Confined chiral nematic (N* ) liquid crystals are the sub
ject of many recent investigations@1–4#, since they are in-
teresting from practical and basic aspects@5–7#. The struc-
ture of a nematic liquid crystal is completely characteriz

by the nematic director fieldnW (rW) with the equivalence of the
nW and2nW state. However, it is often practical to describe t
structure of theN* phase with the twist fieldqW (rW) that points
in the direction of the axis characterizing local twist of t
director fieldnW (rW) @8#. Clearly nW (rW) would suffice, but the
field qW (rW), although carrying less information, is sometim
more illustrative. In such a case the term ‘‘chiral nema
(N* ) surface’’ is introduced for the surface normal
qW (rW). The director is thus everywhere tangential to theN*
surface.

The subject of the paper is a droplet of chiral nema
liquid crystal in an electric field@3,9#. Confinement deforms
the homogeneous twist fieldqW ÞqW (rW) of the unconstrained
N* phase. The structure of a droplet is a result of a com
tition between field and surface effects. Due to negative
electric anisotropy the director tends to be perpendicula
the applied electric field—the field alignsqW parallel toEW . On
the other hand, the confinement to a spherical cavity
parallel anchoring on the cavity wall forcesN* surfaces to
be as spherical as possible to minimize the total surface
energy. Thus in the absence of the field the structures w
sphericalN* surfaces are the most stable ones. In a h
enough electric field the spherical structures transform
planar ones. Experimental studies of droplets with diame
between 10 and 40mm showed that this transition is con
tinuous@3#. Intermediate structures are characterized by a
central region in which the fieldqW (rW) is already aligned with
the electric field and an outer region in which theN* sur-
faces still preserve curved shape due to degenerate pa
anchoring at the cavity wall. The flat central region appe
when the field crosses a certain threshold value. Its size
pends on the strength of the field@3#. The authors report tha
the growth of the central region with the field is not entire
continuous—a steplike behavior is observed.

In our previous paper, these intermediate structures w
551063-651X/97/55~3!/2925~13!/$10.00
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modeled merely from the topological point of view@9#. Then
a crude estimate, based on the length and strength of di
nation lines, was used to calculate the total free energy of
structures. The qualitative agreement with the experime
was good, although the threshold values were overestim
and a steplike behavior of the growth of the flat central
gion of the droplet was not explained. In the present pa
models for the director fields of the intermediate structur
which give a better estimate of the total free energies
intermediate structures, are constructed. The calcula
threshold values of the transition are now much closer to
observed ones and the steplike behavior can also be
plained.

In Sec. II the improved model of the intermediate stru
tures is described in detail and briefly compared with
previous model. In Sec. III the free energies and transiti
are calculated. Finally, the results are discussed in Sec.

II. MODELING OF CHIRAL STRUCTURES

In order to describe the intermediate structures, an in
tive analytical model based on rotational ellipsoidalN* sur-
faces was used in our previous paper@9#. At the time the
models for the director field of initial spherical and fin
planar structures were known@10,11#, but the models for the
director field of the intermediate structures have been de
oped only recently and are presented here. Calculations w
therefore based on a simple mathematical model forN*
surfaces—rotational ellipsoids. Furthermore, infinitely stro
degenerate parallel anchoring was assumed to make th
pological description easier and the elastic free energy
ascribed to the defect lines according to their length a
strength. The description of the defect lines is well defin
by the topological constraints and is mathematically sim
at all stages of the transition. Depending on the initial sph
cal structure and its orientation in the electric field four po
sible intermediate structures were predicted. Later it turn
out that the radial defect line oriented parallel to the appl
field is not metastable as supposed, but unstable, so in
there are only three possible intermediate structures. In
electric field sphericalN* surfaces deform into oblate rota
2925 © 1997 The American Physical Society
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2926 55J. BAJC AND S. ŽUMER
tional ellipsoids, which have the same shape for all interm
diate structures: let their short axis be denotedd and the
other twod1d. Clearly,d50 corresponds to spherical an
d→` to planar structures, and the transition can be
scribed by the dependence ofd, the eccentricity parameter o
theN* surfaces, on the electric field.

If the N* surfaces are known, the length of the defe
lines for the structures can be calculated and the elastic
energy can be estimated. The electric free energy can on
estimated for high chirality (qR@2p) (R is the droplet ra-
dius!, when the average of the electric free energy den
over one pitch can be calculated. This average electric
energy can be represented as a function of the fieldqW (rW),
rather than a function of the fieldnW (rW). In this frame the
analytic expression for the free energy was derived in the
elastic constant approximation. The results give reason
qualitative matching with the experiments, but the quant
tive matching is not so satisfactory. As discussed in@9# there
are several reasons for the lack of a quantitative match
the assumption of infinite anchoring being the first to qu
tion.

The infinite anchoring approximation is usually justifie
with large size of the system. It is known that the strength
an interaction can be expressed with a particular len
These characteristic lengths measure distances, where
changes of the ordering, induced by a particular effect,
come significant. Examples of such lengths are the elec
jE5AK/(«0u«auE2) and magneticjB5AKm0 /(uxauB2) co-
herence lengths, the surface extrapolation len
ds5K/W0, etc. Shorter length means stronger interacti
On this basis, for a nematic system, the anchoring is sai
be strong, ifds!D, whereD is a characteristic dimension o
the system~for the sphereD5R). In chiral systems anothe
length—pitch—is relevant. In order to state what sort of a
choring one has,dsmust now be compared to both the radi
R and pitchP52p/q.

A simple calculation in cylindrical geometry illustrate
the above considerations and gives an idea of the meanin
the symbol ‘‘! ’’ when comparing characteristic length
Suppose thatqW is parallel to the cylinder axis so that th
structure in the whole cylinder is obtained by rotating t
structure on a particularN* surface~a disk! by qz when
moving a distancez along the axis of the cylinder. In th
case of infinite anchoring and high chirality limit the direct
field on theN* surface is almost uniform. It deviates only
the vicinity of the surface in order to satisfy the infinite a
choring. Let us estimate the thickness of this region. T
rotation of nW by an angleg<p/2 is needed to adjust th
director to the surface. The thickness of the nonuniform
gion can thus be estimated asP/45p/2q. The corresponding
elastic free energy on account of the unwoundN* phase is

Fstrong5
1

2

K22

2
q2

p

2q
2pRL5

1

2
K22qRp2L, ~1!

where the averaging of the twist energy over the reg
yields 1

2, K22 is the twist elastic constant, andL is the length
of the cylinder. The surface contribution to the free energ
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zero due to infinite anchoring. In fact,Fstrong is even larger
due to splay and bend contributions to the total elastic f
energy@8#.

The other limiting case is the one with completely un
form director field on each circle. In this case the elastic f
energy is zero due to completely satisfied twist, but the s
face free energy is nonvanishing. If the surface free ene
of the Rapini-Papoular@12# form is supposed,

Fs5
1
2W0 R

S
sin2Q dS, ~2!

whereQ is the angle between the preferred and the ac
director orientation andW0 is the surface anchoring strengt
the total free energy becomes

Funiform5 1
2RW0pL. ~3!

Clearly,Funiform is the upper limit for the total free energy i
the finite anchoring regime. If the infinite anchoring is to
considered as a possible approximation the total free en
Fstrong must inevitably be less thanFuniform or equivalently
the surface extrapolation length must be less than a few h
dredths of a pitchP,

K22

W0
5ds,

1

2p2P;0.05P. ~4!

In the one constant approximation, the valu
K55310212 N andW050.2 mJ/m2 @8,13,14# give the sur-
face extrapolation lengthds525 nm, making the infinite an-
choring approximation questionable forP,500 nm. Figure
1 illustrates the above limiting possibilities in the case
spherical confinement. In Fig. 1~a! the director field of the
planar bipolar structure is shown for the infinite parallel a
choring. Note that the point defects on successive circ
form a double surfacex defect spiral, which becomes ver
long ~compared to the droplet radiusR) for a highly chiral
N* phase. In Fig. 1~b! the director field in the droplet for the
case of a uniform director arrangement on each circle
sketched. The estimated free energy for the structure sh
in Fig. 1~a! is almost 1400pKR for R510 mm,

FIG. 1. Schematic presentation of the director field in plan
structures:~a! infinitely strong and~b! zero parallel anchoring. Fo
the case of infinite parallel anchoring~a! corresponds to relatively
small chiralityqR&1. With increasing chirality the director field on
each circularN* surface looks more and more uniform. Whe
qR*100 the director field is uniform on most of the circle exce
for a thin stripe at the border of the circle. The director field th
looks like the one for the zero anchoring~b!, implicitly indicating
that a pitch much smaller than the surface extrapolation len
ds5K/W0 results in the weak anchoring regime.
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55 2927STRUCTURAL TRANSITION IN CHIRAL NEMATIC . . .
P5500 nm, and the above cited values forK and W0,
whereas for the structure shown in Fig. 1~b! the free energy
is approximately 270pKR, which makes this structure ene
getically more favorable.

The next reason for the quantitative failure of the previo
model is nonconstant pitch. Taking oblate rotational ell
soids as the ansatz for theN* surfaces results in large spati
variation of uqW u, especially in the vicinity of the equatoria
plane. On the other hand, the observed difference betw
actual and intrinsic pitch is very small in the bulk as well
in confined systems@15#. In order to limit the spatial varia-
tion of uqW u, equidistantN* surfaces are constructed in th
improved model.

A. Improved model

In the spirit of the above considerations an improv
model of the intermediate structures is proposed. The c
struction is based on the following facts.

The chiral nematic surfacesof the intermediate structure
are built up of two concentric disks of radiusd separated by
2d, and the outer part of a torus with the radius of its cen
equal tod and the radius of its tube equal tod. Equivalently,

FIG. 2. Schematic presentation of the chiral nematic surface
the ~a! previous~topological! and~b! and~c! improved models. For
d1d,R chiral nematic surfaces are closed, whereas ford1d.R
chiral nematic surfaces are cut in two parts. In the previous mo

the infinite anchoring forces the directornW (rW) to be tangential to the
border of the cut chiral nematic surface, resulting in additional
fects. In the improved model no deformation of the director fie
due to the presence of the surface is taken into account, so all c
nematic surfaces are topologically equivalent to a sphere. In
construction of the director field in the droplet use is made of
fact that each point in the droplet~for example,B or B8) corre-
sponds to precisely one point on the central circle~in this caseA
andA8). The connection between the points is determined by

field of helical axesqW (rW). See the text for details.
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the shape of anN* surface is the same as the shape of
elastic membrane stretched over a torus~see Fig. 2!. The
center of eachN* surface remains in the center of the drop
and the two disks are perpendicular to the applied elec
field. With such an ansatz, the distance between the suc
siveN* surfaces is kept constant. Whend50 the structures
are spherical andd>R corresponds to planar structure
which appear in high electric field. It is convenient to no
malized with respect toR, which is to definee[d/R. When
the size of a particularN* surface is too large~i.e.,
d1d.R), the droplet surface cuts it into two parts, but t
shape of these two parts is not altered.

The director field for the intermediate structure
(0,d<R) is constructed from the ansatz for the direct
field on the central circle~radiusd), known pitch, and the
fact that the axis of rotation in theN* phase lies normal to
theN* surfaces. Possible director configurations on the c
tral circle are deduced from the known director at its boun
ary ~radius equal tod)—it must be tangential to it, since th
director is supposed to be tangential to theN* surfaces, and
the boundary of the circle is a line@16#. In the case of infi-
nitely strong anchoring there are two topologically differe
cases: theN* surfaces are either closed~equivalent to a
sphere! or cut by the droplet surface into two parts~each
equivalent to a circle!. The director field in the case of th
improved model, on the other hand, does not change in
vicinity of the droplet surface and eachN* surface is topo-
logically equivalent to a sphere. The only difference betwe
the director fields on particularN* surfaces is that some lie
entirely in the droplet and some are partially cut off by t
droplet surface. Particular cases are discussed later.

The field of helical axesconsists of straight lines due t
equidistantN* surfaces. ThereforeuqW u is closer to the intrin-
sic q than in the previous model. Nevertheless, even wh
the director field of an oblate structure is constructed in s
a way that any two directors lying a distancel apart along a
helical axis are relatively rotated for the anglelq, i.e., the
intrinsic twist seems to be satisfied in the entire droplet,
twist free energy contribution in the toroidal part of the dro
let is not zero. This is a consequence of thel defect line at
the border of the central circle. A similar structure is found
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FIG. 3. Director field on a circle with infinite parallel anchorin
at the circle edge.~a! Bipolar structure with twos851 surface point
defects and~b! monopolar structure with ones852 surface point
defect. If the defects are treated as bulk instead of surface
defects, then their strengths should be halved. The bipolar struc
therefore has twos5

1
2 bulk point defects and the monopolar stru

ture has ones51 bulk point defect. All the defects lie very close t
the border in order to minimize the free energy.
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2928 55J. BAJC AND S. ŽUMER
cylindrical cavities, and is known as the radially twisted
double twisted structure@15,17,18#. The structure has al
line along the tube axis@z axis in cylindrical coordinate sys
tem, see Fig. 11~a!#. The director is parallel to the tube ax
in the center of the tube, and is rotating abouteW r in the rest
of the tube, for example,nW 5cos(qr)eWz2sin(qr)eWf . The local
helical axes areqW 15eW r and qW 25cos(qr)eWf1sin(qr)eWz. The
analysis of the local director with the twist pseudotens
first introduced by Kilian and Sonnet@19#, confirms the
double twist character of the director field in the toroidal p
of the droplet. The shape of theN* surfaces results in the
following general director field in the toroidal part of th
droplet@expressed in toroidal coordinates, see Appendix
Fig. 11~b!#:

nW 5cos@V~r ,u,f!#eW u1sin@V~r ,u,f!#eWf . ~5!

Locally the director rotates about two twist axes with t
corresponding wave numbers:

q15
]V

]r
, q252

d sin~2V!

2r ~d1r sinu!
. ~6!

The first axis of rotation is, as expected,erW , whereas the
second one is far less obvious and reads

F r cosVS cosV1
]V

]f D2~e1r sinu! sinV
]V

]u GeW r
1sinVFe sin~2V!

2
1r

]V

]r
~e1r sinu!GeW u

2cosVFe sin~2V!

2
1r

]V

]r
~e1r sinu!GeWf.

The second wave number equals zero, if the structur
spherical~i.e., d50) or if V(rW)5Np/2 ~whereN is an in-
teger! which does not result in the chiral structures that
required. It follows that the twist free energy of oblate stru
tures cannot be zero.

At the droplet surfacedegenerate planar anchoring is a
sumed. Its strength is supposed to be finite, but still rat
strong as in the experimental studies by Crooker and
workers@1–3#. In order to keep the calculations as simple
possible, the director field close to the droplet surface is
termined the same way as in the central parts of the dro
and is not adjusted to fulfill the boundary conditions. In r
ality the director field near the surface is deformed in or
to minimize the total free energy. Since these adjustme
are difficult to include in the type of calculations perform
here, no deviations of the director field at the surface
taken into account. The surface free energy is thus sim
added to the total free energy.

The total free energyof a particular structure is calculate
in the following way. The free energy density is derive
analytically using the known director field. Then the integ
tion of the free energy density is performed numerically
consists of the integral over the volume of the droplet
elastic and field contribution and of the integral over t
droplet surface for the interfacial contribution. The elas
free energy is a sum of splay, twist, bend, and core con
r
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bution that are calculated separately so that the one ela
constant approximation is no longer essential.

B. Oblate structures

Saying that a transition from a particular spherical to
particular planar structure is continuous means that the di
tor field changes continuously. The modeled intermedi
oblate structure, characterized withe[d/R, must therefore
be chosen so as to continuously connect the particular in
spherical structure with the particular final planar structu
In other words, the intermediate oblate structure must yi
the initial spherical structure fore50 and the specific plana
structure fore>1. The first impression is that the transitio
is complete whene51. It is true thate51 defines a planar
structure, but it is not necessarily the desired final pla
structure—it does not necessarily have minimal total f
energy.

The first step in the transition is the change from a sph
cal (e50) to an intermediate oblate structure (e.0). This
transition is accompanied by the creation of the circle w
radiusd5eR in the center of the droplet. The director fie
on this circle is used later as the ‘‘cornerstone’’ of the dire
tor field in the entire droplet. In order to obtain possib
director fields on the central circle the boundary conditions
its circumference must be determined. Since the circle lie
the bulkN* phase, the boundary conditions are not imme
ately obvious. Taking the assumption of oblateN* surfaces
to be valid in the entire droplet, the central circle can
viewed as the oblateN* surface with short axisd50 and
long axesd1d5d. DemandingnW (rW) to be tangential to the
N* surface is thus equivalent to infinitely strong tangent
anchoring at the circle edge. This is the same as saying
the borderline of the circle is al line, where theqW (rW) field is
singular and thenW (rW) field is not @8#. The allowed director
fields for a two-dimensional nematic bound to a circle a
well known, the most stable being the so-called monopo
and bipolar structure@16# ~Fig. 3!.

Since no observations of discontinuous transitions
tween different intermediate structures have been publish
those transitions are not taken into account in the forthco
ing calculations. This implies that the transition is describ
by the initial spherical structure and appropriate intermed
oblate structure which changes its shape, depending on
applied field. A description of such a transition is sufficien
described by the functione(E), which is yet to be calculated

1. Construction of the director field

Once the director field on the central circle is determin
the director in the rest of the droplet can be calculated. T
field of helical axes consists of straight lines attached to
central circle and pointing outwards. For each pointB in the
droplet there is precisely one pointA on the central circle
such that a straight line alongqW (rW) connects them
(qWABiABW ). The distance between the points determines
angle of rotation:a5qWAB•ABW @see Fig. 2~b!#. Such a direc-
tor field satisfies the intrinsic twist alongqW (rW) in the entire
droplet. However, double twist cannot be avoided in the
roidal part of the droplet. Since it is not possible to satis
the intrinsic twist in both directions, the twist contribution
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55 2929STRUCTURAL TRANSITION IN CHIRAL NEMATIC . . .
the free energy is not identically zero. The application of
above rule has the very important consequence thatx defect
lines are normal to theN* surfaces. A further consequence
a condition that thex lines in oblate structures must be no
mal to the central circle, since they originate from point d
fects on it. The resulting director field does not allow t
defect lines in the plane of the central circle. On the ot
hand, defect lines in all experimentally observed obl
structures lie perpendicular to the applied electric field, i
they lie in the plane of the central circle.

Therefore a slight modification of the above director fie
is made. The modification has to be such that defect lin
parallel to the field~i.e., normal to the central circle!, are
rotated for 90° to be in the plane of the central circle.
other words, the director field above and below the cen
circle should somehow be expanded to the rest of the dro
An example of such a transformation is given in Fig.
Representing anN* surface with an elastic surface—this
due to elasticity of the nematic liquid crystals—one c
imagine a stretching of the director structure on a cir
above~or below! the central circle over the toroidal part o
the sameN* surface to its equator. Taking the stretchi
factor to be constant for the entireN* surface makes it pos
sible to describe the process in a mathematical language.
director field above and below the central circle is calcula
as before, takingqW (rW) parallel to thez axis, which points
along the electric fieldEW . The director field, calculated thi
way at a certain pointrW1, has to be moved to a pointrW2,
according to the stretching factor

d1pd/2

d
511

pd

2d
, ~7!

whered is the central circle radius andd the distance be-
tween a particularN* surface and the central circle. Fo
d50 no stretching is needed, because theN* surface does
not have a toroidal part, and more and more stretching
needed asd is increased and there is more of a toroidal p

FIG. 4. Topological transformation of the parallel diametric
oblate structure into the normal diametrical oblate structure. T
the three-dimensional director fields on two typical chiral nema
surfaces@the ~a! parallel diametrical oblate structure and~b! normal
diametrical oblate structure#. The transformation is illustrated b
cross sections of chiral nematic surfaces andx lines ~bottom!. The
two s5

1
2 x lines are broken at the border of the central circle. Th

each half of thex line is rotated by 90° into the plane of the centr
circle. The rotateds5

1
2 x lines fuse into ones51 x line. The

thickness of a defect line corresponds to its strength. For de
about both diametrical oblate structures see Sec. II C.
e
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r
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to which the director field has to be stretched. The stretch
factor, defined this way, rotates parallel defect lines~parallel
to the applied electric fieldEW ) for 90° into the normal defec
lines ~Fig. 4!. The intrinsic twist alongqW (rW) is no longer
fulfilled in the entire droplet, but the calculations show th
the twist free energy is still close to the one obtained for
nonstretched structure~see Fig. 5!.

By choosing an appropriate director configuration on
central circle and applying one of the above methods, ob
structures withx lines perpendicular or parallel to the ap
plied electric field can be modeled. Only perpendicularx
lines were observed in oblate structures and only perpend
lar or parallel orientation ofx lines in spherical structures in
low electric field was found to be stable@9#. Therefore mod-
eled director fields of intermediate structures represent a
ficient set to describe all possible transitions from spher
to planar structures.

At this point it should be stressed that as far as def
lines are concerned there is a very important difference
tween the previous and the improved model. For the pre
ous model, the infinitely strong parallel anchoring resulted
topological equivalence of the cutoff part of theN* surface
with a circle and further to the formation of point defects
the edge of the cutoffN* surface. These point defects form
long surfacex lines which increase the elastic free energy
lot. On the other hand, in the improved model the surfa
defect lines are removed because the anchoring is no lo
infinitely strong.

C. Particular cases

To get planar structures from spherical ones, there
several possibilities, depending on the initial spherical str
ture and its orientation in electric field. There are thr
spherical structures with relatively low free energy@10# but
only two were observed experimentally@3,20#. Usually the
so-called radial spherical structure~Frank-Pryce model@21#!
is observed in the absence of the electric field. This struc
has a singles52 x line that extends from the center to th
droplet surface. A low electric field does not result in stru

l
:
c

n

ils

FIG. 5. Influence of stretching on the twist free energy. Stret
ing of the director field of the parallel diametrical oblate~PDO!
structure results in the normal diametrical oblate~NDO! structure.
The corresponding twist free energy is increased due to unsati

intrinsic twist alongqW (rW), but the increase is relatively small durin
the entire transition 0,e5d/R,1. For comparison, the twist con
tribution of the normal radial oblate~NRO! structure is added. Note
that the twist free energy of the NRO structure is approximat
twice the twist free energy of the NDO structure. The same is t
for the bend, splay, and core free energies. See Sec. III for det
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2930 55J. BAJC AND S. ŽUMER
tural changes of the director field, but the radial defect l
tilts into position normal to the field@3,9#. The other ob-
served structure is the so-called diametrical structure wi
singles51 x line which extends from one pole to the othe
In low electric field the defect line tends to be either para
~stable orientation! or perpendicular~metastable orientation!
to the applied field.

This gives three experimentally possible initial spheri
structures, stabilized by the low electric field. Each of th
evolves in its own way, giving three intermediate obla
structures. The structures are named after the position o
defect lines with respect to the applied electric field and a
the spherical structure they originate from. Detailed ma
ematical description of director fields of intermediate stru
tures is given in the Appendix.

1. Parallel diametrical oblate structure

This structure appears when the diametrical spher
structure is in its stable position in low electric field. In hig
enough field the central circle with a bipolar structure is c
ated and thes51 x line splits into twos5 1

2 x lines which
remain parallel to the applied field. Each defect line pe
etrates the central circle in ans5 1

2 point defect, characteris
tic for the two-dimensional bipolar structure that builds
on the central circle@Fig. 3~a!#.

Construction of the director field inthe parallel diametri-
cal oblate~PDO! structure is the simplest one. It is obtaine
by the first method, described in the Sec. II B 1. Accordi
to the bipolar structure on the central circle the distance
tween the two defect lines equals 2d and they lie symmetri-
cally with respect to the center of the droplet. With increa
ing d they get shorter and shorter and finally disappear on
droplet surface ford>R. Length of each line is 2AR22d2.
There are no surface defect lines as in the previous mo
because of the finite anchoring strength.

2. Normal diametrical oblate structure

If the initial orientation of the diametricalx line is per-
pendicular to the field, the line breaks in two parts separa
with the central circle of radiusd. The two lines are naturally
still perpendicular to the applied field. Let this structure
callednormal diametrical oblate~NDO! structure.~A better
name would probably be perpendicular diametrical obl
structure, but this would lead to the abbreviation PDO, wh
is the same as for the parallel diametrical oblate structur!

Since the defect lines in this structure are in the plane
the central circle the second method must be used to
struct the director field in the droplet~see Fig. 4!. The struc-
ture on the central circle is again bipolar ands51 x lines lie
symmetrically with respect to the droplet center. Each l
has lengthR2d and disappears on the droplet surface wh
d>R.

The normal and parallel diametrical oblate structure
somewhat similar although this is not obvious at first glan
Nevertheless, one structure can be continuously transfor
into the other by the procedure of stretching, described in
Sec. II B 1. Let us start with a parallel structure. The poi
where defect lines are attached to the central circle are
fixed, but the ‘‘upper’’ and the ‘‘lower’’ half of thes5 1

2 x
defect line are rotated into the plane of the central circle~see
e
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Fig. 4!. Then both halves of thes5 1
2 x line fuse, the

s51 x line appears, and the normal diametrical oblate str
ture shows up. The described topological transformat
confirms the similarity between the two structures, but e
ergy considerations are required to determine whether or
such a transition is really possible.

3. Normal radial oblate structure

The third oblate structure originates from the initial rad
spherical structure. In low fields thes52 x line is stable
when it is normal to the applied electric field. When the fie
increases sufficiently, the central circle with monopolar
rector field is created@see Fig. 3~b!# and the former radial
defect line is attached to its border. Because of the nor
defect line let this structure be calledthe normal radial ob-
late ~NRO! structure. As in the case of the normal diamet
cal oblate structure, the second method is used to cons
the director field in the droplet. The characteristicx line with
strengths52 has lengthR2d and disappears at the dropl
surface whend>R. A schematic presentation of the direct
field for this structure is given in Fig. 6.

III. TRANSITION

To obtain the stability diagrams of the structures their fr
energy has to be determined. Since the model director fi
are known the free energy is in principle easy to calcula
The bulk part is an integration of the bulk free energy de
sity, whereas the surface contribution is a surface integra
the surface free energy density. There are, however, s
numerical difficulties, related to a relatively time consumi
computation. The total free energy is obtained in the follo
ing way.

The surface contribution results from a nonparallel alig
ment of the director at the droplet surface, as described
Sec. II A. The surface free energy@Eq. ~2!# is rewritten as

W0

2 R
S
S nW ~RW !•

RW

R
D 2dS. ~8!

The bulk contribution is composed of two parts, an elas
part due to deformed director field in the droplet and a fi
part due to dielectric anisotropy of theN* phase. The elastic
free energy density has the usual Frank form

FIG. 6. Schematic three-dimensional presentation of the dire
field in the NRO structure ford5R/2 andqR52p. Several chiral
nematic surfaces are shown:~a! the central circle,~b! theN* sur-
face withd5R/4, and~c! theN* surface withd5R/2. The corre-
sponding angles of rotation of the director are 0,p/2, andp, respec-
tively.
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f elastic5
K11

2
~¹W •nW !21

K22

2
@q1nW •~¹W 3nW !#2

1
K33

2
unW 3~¹W 3nW !u2

2
K24

2
¹W •@nW 3~¹W 3nW !1nW ~¹W •nW !#, ~9!

whereK11, K22, K33, andK24 are the splay, twist, bend, an
saddle-splay elastic constants, respectively, andq52p/P is
the intrinsic wave number of theN* phase. The saddle-spla
free energy contribution is zero for all spherical and pla
structures and relatively small when compared to the sp
and bend contribution for oblate structures. Therefore i
not included in the forthcoming calculations. Assuming th
the electric field inside the droplet is equal to the appl
electric field, the field free energy density is

f field52 1
2«0«a~nW •EW !2, ~10!

where «a5« i2«' is the dielectric anisotropy of theN*
phase. Assumption of homogeneous electric field may b
very crude estimate, as the director field varies considera
over droplets. And even if the assumption of homogene
field inside the droplet is acceptable, the field inside
droplet is not necessarily equal to the applied one. Since
droplets are confined to a polymer matrix, which does
have to have the same average dielectric constant as
N* phase, the field in the droplet is connected with the fi
in the polymer matrix. As an estimate, the droplet in t
matrix can be considered as a uniform sphere with dielec
constant equal to the average dielectric constant of theN*
phase«̄. If it is further assumed that the conductivities of th
polymer matrix and liquid crystal are negligible, that th
droplets are not very close to each other—this is opposit
the requirements of the applications@5#—and that the elec-
trodes are far enough apart, the electric field in the drople
approximately equal,

E8'
3

k12
E, k[

«̄

«PM
, ~11!

whereE8 is the field in the droplet,E the field in the polymer
matrix away from the droplet, and«PM is the dielectric con-
stant of the polymer matrix. If both dielectric constants a
approximately equal (k51) the electric field in the drople
can be taken equal to the applied electric field. This furt
means that the field in the droplets is not affected by
neighboring droplets, since the field in the matrix is n
changed. Otherwise the electric fieldE that enters the free
energy expressions must be replaced byE8. On the other
hand, if the conductivity of the polymer matrix and liqu
crystal is not negligible, the electric field in the droplet
approximately related to the applied low frequency elec
field as

E8'
3

k̃12
E, k̃[

s̄

sPM
, ~12!
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where s̄ is the average conductivity of liquid crystal an
sPM is the conductivity of polymer matrix@22#.

The integration of the free energy density is perform
numerically. There are no problems with the surface, fie
and twist contributions, but bend and splay free energy d
sities diverge in the vicinity ofx lines. The isotropic cores o
defects are introduced to overcome this difficulty, but t
numerical integration remains quite problematic because
the rapid changes of the free energy in the vicinity of the
cores. Therefore an iterative integration method is used.
starting mesh of points used for integration is given, but
the regions of rapidly changing free energy new mesh po
are added in order to reduce the influence of each m
point. This is the most important advantage of the analyti
form of the director field and free energy density. The fr
energy is calculated for the values of parametere in the
interval from 0 to 1. Calculated contributions~bend, field,
and surface! are then expressed with appropriate analyti
functions that fit numerically obtained values the best.

Each contribution to the free energy can be separated
two parts. The first one describes the average behavior o
function while the other one, which is smaller than the fi
one, reflects the periodic structure in the droplets. The la
one is sinelike modulated with a wave number 2q, where the
factor 2 is a consequence of the head-tail symmetry of
nematic phase. The core and twist contributions to the f
energy do not have the modulated part, and the influenc
the modulated part on the surface free energy is negligi
compared to the average behavior and numerical uncerta
of the results. On the other hand, modulations of the sp
bend, and field free energy are clearly visible and n
negligible—the relative amplitude of oscillations is up
10%. For all three contributions the amplitude of the sinel
modulation becomes smaller with increasinge. As expected,
another important feature is that the modulation gets sma
with increasing chirality, i.e., with increasingq. Hereafter
the one elastic constant approximation is employed, beca
the splay and bend contribution add to a nonmodulated fu
tion when the corresponding elastic constants are set e
(K115K33). Only the field free energy is described with bo
average and modulated functions. This makes the calc
tions as simple as possible, but on the other hand the des
tion is complete enough to explain the steplike behavior
the transition.

In order to quantify the sinelike modulation, the field co
tribution is first described with a polynomial function, whic
describes the average dependence one. Next the optimal
polynomial function is subtracted from the numerically ca
culated field free energies and the difference is appro
mately described with a function of the form
A(e)sin(2qRe), where amplitudeA(e) is again polynomial.
The error, obtained when subtracting two large, almost eq
numbers, which carry their own~in this case numerical! error
is known to be large. For example, if the amplitude of t
modulation is as much as 5% of the optimal polynom
function, then the relative errors, made by subtraction,
more than 20 times larger than the numerical errors, made
numerical integration. Therefore the amplitudeA(e) is de-
rived with a considerably larger uncertainty than the polyn
mial that describes the average behavior of the field f
energy contribution. That is why the steplike behavior of t
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TABLE I. Fitted free energies in the high chirality limit (qR560p) and one elastic constant approxim
tion: K115K225K33[K55310212 N. The radius of the droplet equalsR510mm and the dielectric anisot
ropy equals«a525. All free energies are given in the unitspKR. The electric field is normalized with
respect to the electric fieldE0, which results in an electric coherence length that is equal to the droplet ra
jE(E0)5R, E050.0336 V/mm. Since the surface and field free energies of the three structures are
within numerical error, only two analytical functions are needed to describe the surface and field free
contributions for all three structures.

Contribution Free energy~units ofpKR)

Elastic: PDO 13.01110.58e23.608e227.983e329.155e30(e21)11.178e2400e

Elastic: NDO 14.99326.372e15.0285e226.1055e326.614e35(e21)

Elastic: NRO 27.178216.291e113.305e2212.860e328.17e28(e21)

Field (0.221 3420.1788e20.273e210.229e3)3(E/E0)
2

Surface e2(0.3194e10.3555)3(RW0 /K)
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transition should not be taken too quantitatively. There
clearly a steplike transition in question, but whether a p
ticular step occurs at slightly higher or lower electric field
beyond the accuracy of the calculations presented here.

The resulting analytical functions are used to write do
the expression for the total free energy of the particular
late structure as a functionF(e,E). To predict a physically
meaningful state, the free energy must be minimized
given electric fieldE. Therefore the derivative]F/]e must
be zero. This yields a relatione(E), but for practical reasons
the inverse functionE(e) is calculated. Once this function i
known, the total free energy for a particular oblate struct
can be compared with the free energy of the correspond
spherical structure to obtain the stability diagram. The to
free energy of spherical structures can be obtained by se
e50 in the expressions for the oblate structures. In addit
it can be obtained analytically for equal elastic constants.
illustration of the above reasoning the parts of the analyt
functionF that describe particular contributions to the fr
energy for the caseqR560p are written in Table I. Note
that there is no modulated part in the expression for the fi
free energy. This is a consequence of high chirality: the a
plitude of the modulated part is smaller than the numer
accuracy.

IV. RESULTS

In this section the above described procedures are use
describe in detail the field induced transition in chiral ne
atic droplets. First, in the high chirality limit (qR560p),
transitions via all three intermediate structures are compa
The amplitude of the field free energy sinelike modulation
here so small that steplike behavior is no longer visible~see
Fig. 7!. The threshold values for all three structures, as w
as the growth of the central region as a function of the fi
are similar, but in detail the behavior of the PDO structure
qualitatively different from the behavior of the other tw
structures. Free energy calculations show that the PDO s
ture with a small nonzeroe(;0.009) has lower free energ
than the corresponding spherical structure even at zero e
tric field. Nevertheless, the growth ofe starts at approxi-
mately the same threshold electric field for all three str
tures.

Next the influence of chirality is studied. In Fig. 8 th
transition for each intermediate structure is drawn
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qR560p, 20p, and 10p. The overall behavior does no
change much for the three chiralities, but there is a qual
tive change due to sinelike modulation of the field contrib
tion to the free energy, which is more pronounced for sma
q.

Finally, the influence of surface anchoring is studied~see
Fig. 9!. With stronger surface anchoring the threshold fie
increases and the transition is completed at a higher fi
Such a behavior is expected, since the transition is ma
governed by the competition between surface and field
fects, whereas the bulk elasticity is important only at t
beginning of the transition. For example, the anchor
strengthW05231024 J/m2 ~see@14#! makes the maxima
surface contribution, which is reached in planar structur
equal to approximately 270pKR. On the other hand, maxi
mal elastic free energy is realized in spherical structures
particular, in the radial spherical structure@9,10#, where it
equals approximately 27pKR. It is instructive to realize that
the electric field contribution for«a525 andE51 V/mm
would equal approximately 200pKR for spherical structures
if they were still stable.

As stated above, the balance between electric and sur
forces mainly governs the structural transition. Therefore

FIG. 7. Comparison of the transition for three possible interm
diate structures: parallel diametrical oblate, normal diametrical
late, and normal radial oblate structure. The behavior of the th
differs mostly at the beginning of the transition, wherease[d/R
behaves similarly for all three at intermediate electric fields.
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55 2933STRUCTURAL TRANSITION IN CHIRAL NEMATIC . . .
shape of the transition functione(E) depends not only on the
anchoring strengthW0 ~see Fig. 9!, but also on the dielectric
constants ofN* phase and polymer matrix. The correspon
ing parameter is proportional to the ratio between the surf
and field free energy:k51 this meansW0 /(Ru«au). The
radius of the droplet enters the expression due to the fact
the surface contribution is proportional toR2 and the field
contribution toR3.

A general remark about the limitations of the derived fr
energies and resulting transitions should be made at
point. There are two reasons for limitations: the first is due
the model itself, the other is a consequence of numer
calculations.

(a) Numerical precisionis not critical for the surface and
field free energies as their densities change very smoo
without sharp peaks. A starting three-dimensional mash
approximately 10031003100 points results in an erro
smaller than 0.1%. Problems arise when the elastic free
ergy density, which has singularities in the vicinity of th
defect lines, is integrated. In order to calculate the free

FIG. 8. Upper diagram shows the transition curve for the pla
diametrical oblate structure, the middle that one for the norm
diametrical oblate structure, and the lower one that for the nor
radial oblate structure. On each diagram the curves for three di
ent chiralities are shown:qR510p ~the thickest line!, qR520p
~line of medium thickness!, andqR560p ~the thinnest line!. For
the highest chirality (qR560p) the sinelike modulation of the field
free energy is too small to make a reliable fit. Therefore the tra
tion curve is smooth. For all three structures the transition curve
not move due to different chiralities, but their shape changes—
steplike behavior is a direct consequence of the sinelike modula
of the field free energy contribution and is more pronounced
smaller chiralities.
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ergy in a reasonable amount of time the accuracy is limi
to 1%.

(b) Model limitationsare most pronounced for smalle ’s,
especially for both normal oblate structures, because of
procedure, where the director field in the entire droplet
obtained from the director field on the central circle. First
all, the deformations on a circle with a radiusd close to the
core radius are strong and the variations of the scalar o
parameter should be included in the calculations of direc
field @23#. Second, for a smalld the stretching factor@Eq.
~7!# is much greater than 1. As a consequence, any disc
ancy between the actual and modeled director field on a c
tral circle will result in a much larger discrepancy in the re
of the droplet. In the limite→0 the stretching factor di-
verges, indicating that modeled director fields for smalle ’s
are not reliable. Indeed, the numerically integrated ela
free energies of both normal structures fore50 are about
6% larger than the analytically obtained ones. This sim
means that models for normal oblate structures do not tra
form into corresponding spherical structures fore50, al-
though the small difference in free energies shows that
discrepancy is not large. On the other hand, for equal ela
constants, the elastic free energy density of thee50 PDO
structure transforms into the free energy of the diametr
spherical structure@10#, confirming that the two structure
are really the same. The other limitation of the model sho
up at the end of the transition. Whene51 all N* surfaces
are parallel and the electric free energy is zero. Therefore
director field in the droplet depends on the competition
tween surface and bulk elastic forces alone, but there ar
topological constraints, because there are no closedN* sur-
faces. The model is, however, based on closedN* surfaces,
so the final planar structures are not described adequa
Therefore it is possible that the transition is not continuous
the end. The conclusion of the above considerations is
following. Transitional structures are optimally modeled f
parameterse in the middle of the interval@0,1#, whereas at
the limits of the interval, in particular for smalle, the models
are less reliable.
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FIG. 9. Influence of the anchoring strength is presented. Th
retical curves are calculated in the one elastic constant approx
tion: qR520p, R510mm, ea525, K55310212 N. The anchor-
ing strength is written on each curve in mJ/m2. A comparison with
the experimental observations parallel~squares! and perpendicular
~circles! to the field, made by Kitzerow and Crooker@3#, indicates
that the anchoring strength should beW050.2–0.4 mJ/m2.
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2934 55J. BAJC AND S. ŽUMER
In order to verify the structures form another point
view, simulations of the polarizing microscope textures
compared with the textures observed by Kitzerow a
Crooker @3#. An example for normal radial oblate structu
with e;0.5 is presented in Fig. 10. The simulations a
based only on polarization rotations and phase sh
whereas the diffraction effects at the droplet surface are
nored because the studied droplets are large enough. In o
to simulate a black and white photograph textures for diff
ent wavelengths are weighted and combined into a sin
gray scale figure. The combination corresponding to the r
tive sensitivity of the photographic film is@24# 470 nm, 20%;
535 nm, 60%; and 600 nm, 20%. For a detailed descrip
of the calculation of light transmission and textures in liqu
crystals see@24,25#. The simulated textures show excelle
agreement with experiments and confirm that our calcu
tions are correct within the framework of the limitations d
scribed above. The distance between successive dark or
fringes in Fig. 10~b! is approximately one-half of the pitch

V. SUMMARY

In this paper, continuous structural transitions in a sph
cal chiral nematic droplet under the influence of an elec
field are studied theoretically. In particular, the intermedi
structures are modeled with oblate chiral nematic surfa
that enable a continuous transition from low-field spheri
to high-field planar structures~see Figs. 2 and 10!. Further,
analytical expressions for director fields of intermedia
structures are developed~see Figs. 4 and 6 and the Appe
dix!. The procedure is based on the known director field
the central circle and chiral character of the liquid cryst

FIG. 10. Simulated textures~left! are compared with the exper
mental ones~right!. In the upper figure~a! the droplets are observe

in the direction perpendicular to the applied electric fieldEW @com-
pare with Figs. 2~b! and 2~c!#. One chiral nematic surface is draw
in the experimental micrograph to ‘‘guide the eye.’’ In the low
figure ~b! the viewing direction is parallel to the applied electr
field. A flat central region is clearly seen: its radiusd is about
one-quarter of the droplet radiusR in the upper figure and one-ha
of the droplet radiusR in the lower figure.
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The analytical director fields developed here and the res
ing evolution of the transition with applied electric field a
in reasonable qualitative and quantitative agreement with
experimental data@3#. It is proved that the transition is
mainly governed by field and surface forces. In other wor
the threshold electric field as well as the evolution of t
intermediate oblate structures are characterized by the
rameterW0 /(Ru«au). This gives an opportunity to determin
either dielectric anisotropy«a or anchoring strengthW0, if
the other is known. For example, assuming«a525,
K55310212 N, andR510 mm, the anchoring strength i
estimated to beW050.220.4 mJ/m2 ~see Fig. 9!. The ob-
served steplike behavior can be qualitatively explained us
a model with sinelike modulation of the electric part of th
free energy, which is related to the periodicity of structur
in chiral nematic phase.

Although the calculations are performed in the one ela
constant approximation, generalization to the nonequal e
tic constant and inclusion of the saddle-splay (K24) term is
possible even with the very same model, as long as the s
(K11) and bend (K33) elastic constants are not too differe
from each other. That limitation is a result of the constru
tion of the director fields, which originate from a directo
field on the central circle that is calculated for equal elas
constants~see the Appendix!. Strong variations of the ratio
between bend and splay elastic constants, such asK33 diver-
gence on approaching the nematic-smectic transition, wo
certainly require a different form of the director field on th
central circle.

The electric field inside the droplet is treated as homo
neous, which might be a crude estimate, but good agreem
with the experiments confirms that possible nonhomoge
ities do not influence the transition significantly. Neverth
less, the change of the electric field strength in the drop
due to mismatching of dielectric constants of polymer mat
and liquid crystal is taken into account.

Finally, it should be mentioned that in real systems,
radial structures occur much more frequently than the d
metrical ones@3,20#. On the other hand, the above calcul
tions show~see Fig. 5! that the elastic free energy of th
radial structures is approximately twice as large as the ela
free energy of the diametrical structures. This discrepa
between experimental observations and theoretical pre
tions remains to be explained.
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APPENDIX: DIRECTOR FIELDS

As described above, the director field in a droplet is d
termined by the director field on the central circle of radi
d ~Fig. 3! and one of the described procedures which cor
sponds to defect lines parallel or perpendicular to the app
electric field. In this section the director fields for all thre
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55 2935STRUCTURAL TRANSITION IN CHIRAL NEMATIC . . .
studied oblate structures are calculated. In order to pre
the director field as clearly as possible appropriate coordin
systems are chosen: cylindrical (r,f,z) for the flat central
region of the droplet and toroidal (r ,u,f) for the rest of the
droplet ~see Fig. 11!.

1. Central circle

The two-dimensional director field on the central circle
determined by the infinitely strong parallel anchoring at
circle border due to thel defect line at the border. Thisl
line is a direct topological consequence of the shape of
N* surfaces and is therefore unavoidable. Therefore the
choring at the border of the circle is infinitely strong and a
the sum of the defects’ strength on the circle equals 1. T
possible director fields on the circle are of interest.

The bipolar director fieldhas two point defects of equa
strength, lying diametrically opposite to each other@see Fig.
3~a!#. Any point defect at the border of a two-dimension
nematic can be treated topologically as an interior~bulk! or
border~surface! defect. The distinction between the two d
scriptions is that if a defect is surfacelike, only one-half o
is actually inside the nematic phase. That is why the direc
field of a defect with the interior strengths, pushed to the
border, looks like the director field of a bulk defect with th
strengths852s. As the sum of the bulk strengths of th
defects on the circle equals 1, the bipolar director field
characterized by two surface defects with strengths851 or
equivalently two bulk defects with strengths5 1

2. As far as a
mathematical representation of the director field is concer
there is no difference between the two descriptions. In
cylindrical coordinate system the director field of the bipo
structure reads

FIG. 11. Coordinate systems used to write down the direc
field in the droplet:~a! cylindrical coordinate system for the fla
region (x21y2<d2) and ~b! toroidal coordinate system for th
curved region of the droplet (x21y2.d). The radiusd of the flat
central region is drawn in thexy plane.
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nW 5
~d22r2!sinf

Ad41r412d2r2cos~2f!
eW r

1
~d21r2!cosf

Ad41r412d2r2cos~2f!
eWf . ~A1!

This director field is an exact solution for equal elastic co
stants and was obtained, for example, in@14#.

The monopolar director fieldhas one point defec
(s852) at the border of the circle. In this case the direc
field is obtained from the known solution for the bulk ca
s52 and equal elastic constants. In an unconstrained t
dimensional nematic the director field near thes52 point
defect can be represented as a family of circles with o
common point. If this point is placed at the border of t
central circle and the entire director field is rotated so t
one of the director field’s circles coincides with the border
the central circle, the monopolar director field shows up@see
Fig. 3~b!#. The director field in cylindrical coordinates read

nW 5
~r22d2!cos~f!

d21r222dr sinf
eW r1

~r21d2!sinf22dr

d21r222dr sinf
eWf .

~A2!

2. Oblate chiral nematic surfaces

The director field at a particular pointB on theN* surface
is obtained by appropriate rotation of the director at po
A on the central circle@see Fig. 2~b!#. In the director fields of
normal oblate structures~NDO and NRO!, stretching of the
director field is necessary to get defect lines in the plane
the central circle. Note that in the flat region the director do
not have az component and that in the curved region t
director does not have anr component~in toroidal coordi-
nates!. This is a natural consequence of the shape of
N* surfaces. Note further that the director field on clos
and cutoffN* surfaces is obtained with the same proced
because the director field is not altered in the vicinity of t
droplet surface.

The parallel diametrical oblate structureis the simplest
one, since no stretching is needed. The director field in
flat region is obtained by a rotation of the bipolar direct
field on the central circle,

nW 5
sin~f2qz!2%P

2sin~f1qz!

A11%P
412%P

2cos2f)
eW r

1
cos~f2qz!1%P

2cos~f1qz!

A11%P
412%P

2cos~2f!
eWf , ~A3!

where%P5r/d is a dimensionless radial cylindrical coord
nate, normalized with respect to the radiusd of the central
circle. The indexP stands for ‘‘parallel.’’ Thex lines
with bulk strength s5 1

2 consist of the points
$(r5d,z,f56p/2)% and are parallel to thez axis, i.e., the
direction of the applied field. The director field in the curve
region is even simpler,

r
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nW 52sin~qr !eW u1cos~qr !eWf , ~A4!

and obviously does not have any defects.
The normal diametrical oblate structureoriginates from a

bipolar structure on the central circle, similar to the PD
structure, but here the defect lines lie in the plain of t
central circle, i.e., normal to the applied electric field. T
director field at pointB does not originate from the sam
point A on the central circle as for the PDO structure@see
Fig. 2~b!#, but from a point closer to the circle center due
the stretching@see Eq.~7! and Fig. 4#, involved in the con-
struction of the director field. The result in the central regi
is

nW 5
sin~f2qz!2%N

2 sin~f1qz!

A11%N
412%N

2 cos~2f!
eW r

1
cos~f2qz!1%N

2 cos~f1qz!

A11%N
412%N

2 cos~2f!
eWf , ~A5!

where%N[rh(z)/d is a stretched dimensionless radial c
lindrical coordinate, normalized with respect to the radiusd
of the central circle. The indexN stands for ‘‘normal’’ and
h(z)[2e/(2e1puzu) is the corresponding stretching fact
in the flat central region. In the outer region the director fie
written in toroidal coordinates, reads
ra

re
oi
re
e

e

,

nW 5
sin~f2qr !2h2~r ,u!sin~f1qr !

A11h4~r ,u!12h2~r ,u!cos~2f!
eW u

1
cos~f2qr !1h2~r ,u!cos~f1qr !

A11h4~r ,u!12h2~r ,u!cos~2f!
eWf , ~A6!

whereh(r ,u)[(2e12ru)/(2e1pr ) is the corresponding
stretching factor in the curved region of the droplet. No
that h is chosen in such a way that it equals 1 foru5p/2,
i.e., the director field at the border of the central circle
used as the origin of the director field in the equatorial pla
of the outer region of the droplet with the curvedN* sur-
faces. Thex lines with bulk strengths51 can be represente
as the points$(r ,u5p/2,f56p/2)%.

The normal radial oblate structureis obtained from the
monopolar director field on the central circle with the proc
dure analogous to the one used for the NDO structure. In
central region the resulting director field in cylindrical coo
dinates reads

nW 5
%N
2 cos~f1qz!2cos~f2qz!12%Nsin~qz!

11%N
222%Nsinf

eW r

1
%N
2 sin~f1qz!1sin~f2qz!22%Ncos~qz!

11%N
222%Nsinf

eWf ,

~A7!

where the abbreviation%N was introduced in the precedin
paragraph. For the curved region the director field is
nW 5
h2~r ,u!cos~f1qz!2cos~f2qz!12h~r ,u!sin~qz!

11h2~r ,u!22h~r ,u!sinf
eW u

1
h2~r ,u!sin~f1qz!1sin~f2qz!22h~r ,u!cos~qz!

11h2~r ,u!22h~r ,u!sinf
eWf , ~A8!
e

-
-
l

whereh(r ,u) was again introduced in the preceding pa
graph.

The comparison between the director field in the flat~cy-
lindrical! and curved~toroidal! region of the droplet reflects
the procedure that was used in the construction of the di
tor field. Let us briefly summarize the procedure. The tor
dal part of the director field of both normal oblate structu
~NDO and NRO! is obtained from the director field in th
-

c-
-
s

flat part of the droplet by the following substitutions: th
variable%N is replaced byh(r ,u), the cylindricalz compo-
nent of the director becomes the toroidalr component of the
director, the cylindricalf component of the director be
comes the toroidalf component of the director, the cylin
drical r component of the director becomes the toroidau
component of the director, and the cylindrical coordinatez is
replaced by the toroidal coordinater .
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