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Structural transition in chiral nematic liquid crystal droplets in an electric field
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Director fields in droplets of chiral nematicholesteri¢ liquid crystals with negative dielectric anisotropy
exposed to an electric field are modeled. Field induced continuous transitions from low-field structures with
spherical chiral nematic surfaces to high-field structures with planar chiral nematic surfaces via intermediate
structures with oblate chiral surfaces are discussed. Depending on initial spherical structures, three possible
transitions are analyzed. Numerically modeled evolution of the intermediate structures, obtained by the free-
energy considerations and model director fields, agrees very well with the published observations by Crooker
and co-workers[S1063-651X97)00603-X]

PACS numbes): 64.70.Md, 61.30.Cz, 61.30.Jf

I. INTRODUCTION modeled merely from the topological point of vig@]. Then
a crude estimate, based on the length and strength of discli-
Confined chiral nematicN*) liquid crystals are the sub- nation lines, was used to calculate the total free energy of the
ject of many recent investigatiori4—4], since they are in- structures. The qualitative agreement with the experiments
teresting from practical and basic aspg@s7]. The struc- was good, although the threshold values were overestimated
ture of a nematic liquid crystal is completely characterizedand a steplike behavior of the growth of the flat central re-

by the nematic director field(r) with the equivalence of the 9ion of the droplet was not explained. In the present paper
A and—n state. However. it is often practical to describe themodels for the director fields of the intermediate structures,

. e 2o . which giv r im f th | fr nergi f

structure of theN* phase with the twist field(r) that points . ch give a better estimate of the total free energies o
. - ; - . intermediate structures, are constructed. The -calculated
in the direction of the axis characterizing local twist of the o

. L IR . threshold values of the transition are now much closer to the
director fieldn(r) [8]. Clearly n(r) would suffice, but the - ;,cerveq ones and the steplike behavior can also be ex-
field q(r), although carrying less information, is sometimespained.

more illustrative. In such a case the term “chiral nematic | sec. |l the improved model of the intermediate struc-
(N*) surfa(?e" IS .|ntroduced for the surfacg normal 10 yres is described in detail and briefly compared with the
q(r). The director is thus everywhere tangential to M®  previous model. In Sec. Ill the free energies and transitions

surface. _ _ ~are calculated. Finally, the results are discussed in Sec. IV.
The subject of the paper is a droplet of chiral nematic

liquid crystal in an electric fieldi3,9]. Confinement deforms

the homogeneous twist fiel&;t a(F) of the unconstrained II. MODELING OF CHIRAL STRUCTURES
N* phase. The structure of a droplet is a result of a compe-
tition between field and surface effects. Due to negative di- [n order to describe the intermediate structures, an intui-
electric anisotropy the director tends to be perpendicular téive analytical model based on rotational ellipsoitiétl sur-
the applied electric field—the field aligusparallel toE. On  faces was used in our previous papst. At the time the
the other hand, the confinement to a spherical cavity an@nodels for the director field of initial spherical and final
parallel anchoring on the cavity wall forcéé* surfaces to  Planar structures were know0,11], but the models for the
be as spherical as possible to minimize the total surface fre@irector field of the intermediate structures have been devel-
energy. Thus in the absence of the field the structures wit@ped only recently and are presented here. Calculations were
sphericalN* surfaces are the most stable ones. In a highherefore based on a simple mathematical model N&r
enough electric field the spherical structures transform intsurfaces—rotational ellipsoids. Furthermore, infinitely strong
planar ones. Experimental studies of droplets with diametedegenerate parallel anchoring was assumed to make the to-
between 10 and 4@&m showed that this transition is con- pological description easier and the elastic free energy was
tinuous[3]. Intermediate structures are characterized by a fladscribed to the defect lines according to their length and
central region in which the field(r) is already aligned with ~ strength. The description of the defect lines is well defined
the electric field and an outer region in which tN& sur- by the topological constraints and is mathematically simple
faces still preserve curved shape due to degenerate paralk all stages of the transition. Depending on the initial spheri-
anchoring at the cavity wall. The flat central region appearsal structure and its orientation in the electric field four pos-
when the field crosses a certain threshold value. Its size deible intermediate structures were predicted. Later it turned
pends on the strength of the fidi@l]. The authors report that out that the radial defect line oriented parallel to the applied
the growth of the central region with the field is not entirely field is not metastable as supposed, but unstable, so in fact
continuous—a steplike behavior is observed. there are only three possible intermediate structures. In an
In our previous paper, these intermediate structures werelectric field sphericaN* surfaces deform into oblate rota-
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tional ellipsoids, which have the same shape for all interme-
diate structures: let their short axis be denoteénd the
other twod+ é. Clearly, =0 corresponds to spherical and
56— to planar structures, and the transition can be de-
scribed by the dependence &fthe eccentricity parameter of
the N* surfaces, on the electric field.

If the N* surfaces are known, the length of the defect
lines for the structures can be calculated and the elastic free
energy can be estimated. The electric free energy can only be
estimated for high chiralitydR>2) (R is the droplet ra-
dius), When_ the average of the electrllc free energy d?ns't%tructures(a) infinitely strong andb) zero parallel anchoring. For
over one pitch can be calculated. This average eI(3c£r|c freﬁz]e case of infinite parallel anchorir{g) corresponds to relatively
energy can be represented as a function of the fi€ld,  small chiralityqgR< 1. With increasing chirality the director field on
rather than a function of the fie|ﬁ(|7)_ In this frame the each circularN* surface looks more and more uniform. When
analytic expression for the free energy was derived in the on8R=100 the director field is uniform on most of the circle except
elastic constant approximation. The results give reasonablfr @ thin stripe at the border of the circle. The director field thus
qualitative matching with the experiments, but the quantital00oks like the one for the zero anchorifig), implicitly indicating
tive matching is not so satisfactory. As discussefbirthere that a pitch much smaller than the. surfage extrapolation length
are several reasons for the lack of a quantitative matching!s=K/Wo results in the weak anchoring regime.

the assumption of infinite anchoring being the first to ques- . . .
tion P g 9 q zero due to infinite anchoring. In fadtg;ngis even larger

The infinite anchoring approximation is usually justified due to splay and bend contributions to the total elastic free

with large size of the system. It is known that the strength oien?rrr?y[sgh limiti is th ith letel .
an interaction can be expressed with a particular lengt 3. 0 ter f_ll’?(ljlng casre]z IS | elontﬁ_m cotrr?pelei/_ ufnl-
These characteristic lengths measure distances, where t m director field on each circlé. in this case he elastic free

changes of the ordering, induced by a particular effect, beE"eray is zero due to completely satisfied twist, but the sur-

come significant. Examples of such lengths are the eIectriI:afC(:1 free energy 1s ?on;a][nshmg. If the smarface free energy
£.= JKi(zo]6ED) and magneticts= K uo/(xaB2) Co- of the Rapini-Papouldrl2] form is supposed,

herence lengths, the surface extrapolation length

d,=K/W,, etc. Shorter length means stronger interaction. Fs=3W, 3Esin2® ds, (2

On this basis, for a nematic system, the anchoring is said to s

be strong, ifds<D, whereD is a characteristic dimension of \yhere @ js the angle between the preferred and the actual
the systemfor the spherd =R). In chiral systems another girector orientation antiV, is the surface anchoring strength,
length—pitch—is relevant. In order to state what sort of aN+he total free energy becomes

choring one hagj; must now be compared to both the radius
R and pitch’=2/q. F uniform= 3 RWo7rL. (3

A simple calculation in cylindrical geometry illustrates _ o _
the above considerations and gives an idea of the meaning &ilearly, F nisom iS the upper limit for the total free energy in
the symbol “<” when comparing characteristic lengths. the finite anchoring regime. If the infinite anchoring is to be
Suppose thaf] is parallel to the cylinder axis so that the considered as a.possmle approximation the tota'l free energy
structure in the whole cylinder is obtained by rotating the' strong Must inévitably be less thaRqiom or equivalently
structure on a particulaN* surface(a disk by gz when the surface extrapolation length must be less than a few hun-
moving a distance along the axis of the cylinder. In the dredths of a pitct,
case of infinite anchoring and high chirality limit the director K 1
field on theN* surface is almost uniform. It deviates only in —2 4 .<——P~0.05P. (4)

S . . e W ST o2

the vicinity of the surface in order to satisfy the infinite an- 0 ™
choring. Let us estimate the thickness of this region. Thqn the one constant approximation, the values

rotation of n by an angley=/2 is needed to adjust the K—=5x10"12N andW,=0.2 mJ/nf [8,13,14 give the sur-
director to the surface. The thickness of the nonuniform reface extrapolation lengttis=25 nm, making the infinite an-
gion can thus be estimated B&= /2q. The corresponding  choring approximation questionable f&<500 nm. Figure
elastic free energy on account of the unwolNi phase is 1 jllustrates the above limiting possibilities in the case of
spherical confinement. In Fig.(d the director field of the
planar bipolar structure is shown for the infinite parallel an-
choring. Note that the point defects on successive circles
form a double surfacg defect spiral, which becomes very
long (compared to the droplet radid®) for a highly chiral

N* phase. In Fig. (b) the director field in the droplet for the
where the averaging of the twist energy over the regiorcase of a uniform director arrangement on each circle is
yields 3, K, is the twist elastic constant, andis the length  sketched. The estimated free energy for the structure shown
of the cylinder. The surface contribution to the free energy isn Fig. 1@ is almost 140&KR for R=10 um,

FIG. 1. Schematic presentation of the director field in planar

1 K22 o 1
Fstrong:§ TQZEZWRL: EKzzq RmL, 1
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FIG. 3. Director field on a circle with infinite parallel anchoring
at the circle edgda) Bipolar structure with twa’ = 1 surface point
defects andb) monopolar structure with ong’ =2 surface point
defect. If the defects are treated as bulk instead of surface type
defects, then their strengths should be halved. The bipolar structure
therefore has twns:% bulk point defects and the monopolar struc-
ture has ons=1 bulk point defect. All the defects lie very close to
the border in order to minimize the free energy.

the shape of aiN* surface is the same as the shape of an
elastic membrane stretched over a tofsse Fig. 2 The
center of eaciN* surface remains in the center of the droplet

) ) ) ) ~and the two disks are perpendicular to the applied electric
FIG. 2. Schematic presentation of the chiral nematic surfaces iMeld. With such an ansatz, the distance between the succes-
the (a) previous(topologica) and(b) and(c) improved models. For /0 N* gurfaces is kept constant. Wheér-0 the structures

d+ §<R chiral nematic surfaces are closed, whereasdfero>R e?re spherical ands=R corresponds to planar structures

chiral nematic surfaces are cut in two parts. In the previous mod . - L . .
P P which appear in high electric field. It is convenient to nor-

Lhe(;nﬁniﬁ:m:hct’rilg f?rces tr;_e direfcnmtr) to blf. tan_gen;ig_lt_to thled malize é with respect tdR, which is to definee= 6/R. When
order of the cut chiral nematic surface, resulting in additional dey, ("o ¢ o particulaN® surface is too large(i.e.,

fects. In the improved model no deformation of the director field o
due to the presence of the surface is taken into account, so all chirgﬂ_ 9>R), the droplet surf_ace cuts it into two parts, but the
ape of these two parts is not altered.

nematic surfaces are topologically equivalent to a sphere. In the . . . .
construction of the director field in the droplet use is made of the The d'r_eCtor field for the intermediate strugtures
fact that each point in the droplétor example,B or B') corre- (0<6=<R) is constructed from the ansatz for the director

sponds to precisely one point on the central cifgtethis caseA  field on the central circléradius 6), known pitch, and the

andA’). The connection between the points is determined by thdact that the axis of rotation in thd* phase lies normal to

field of helical axesj(r). See the text for details. the N* surfaces. Possible director configurations on the cen-
tral circle are deduced from the known director at its bound-

P=500 nm, and the above cited values fr and W, ary (radius equal ta5)—it must be tangential to it, since the
whereas for the structure shown in FigblLthe free energy director is supposed to be tangential to Me surfaces, and
is approximately 278K R, which makes this structure ener- the boundary of the circle is a lifd.6]. In the case of infi-
getically more favorable. nitely strong anchoring there are two topologically different
The next reason for the quantitative failure of the previousca@ses: theN* surfaces are either closequivalent to a
model is nonconstant pitch. Taking oblate rotational eIIip-Sph?r¢ or cut by' the drOple_t surfaqe into two partsach
soids as the ansatz for the& surfaces results in large spatial _equale(;lt toda Icwcl)eﬂ;l’hetﬂlre(;]toréle(ljd In thet c?]se of Fheth
variation of|ﬁ|, especially in the vicinity of the equatorial IMprovec modet, on e omer hand, does not change In the

plane. On the other hand, the observed difference betwe \HC'.mty of thg droplet surface and ead syrface IS topo
AR : ogically equivalent to a sphere. The only difference between
actual and intrinsic pitch is very small in the bulk as well as . . : . . .
the director fields on particuldd* surfaces is that some lie

m confmfzd syst-e.m515]. in order o limit the spatial V?”a' entirely in the droplet and some are patrtially cut off by the
tion of |q|, equidistantN* surfaces are constructed in the groplet surface. Particular cases are discussed later.

improved model. The field of helical axesonsists of straight lines due to

equidistantN* surfaces. Thereforig| is closer to the intrin-
sic g than in the previous model. Nevertheless, even when
In the spirit of the above considerations an improvedthe director field of an oblate structure is constructed in such
model of the intermediate structures is proposed. The cora way that any two directors lying a distarlcapart along a
struction is based on the following facts. helical axis are relatively rotated for the andtg, i.e., the
The chiral nematic surfacesf the intermediate structures intrinsic twist seems to be satisfied in the entire droplet, the
are built up of two concentric disks of radidsseparated by twist free energy contribution in the toroidal part of the drop-
2d, and the outer part of a torus with the radius of its centetet is not zero. This is a consequence of thdefect line at
equal tos and the radius of its tube equaldo Equivalently,  the border of the central circle. A similar structure is found in

A. Improved model
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cylindrical cavities, and is known as the radially twisted orbution that are calculated separately so that the one elastic
double twisted structurgl5,17,1§. The structure has a constant approximation is no longer essential.

line along the tube axigz axis in cylindrical coordinate sys-

tem, see Fig. 1d)]. The director is parallel to the tube axis B. Oblate structures

in the center of the tube, and is rotating abeyitin the rest Saying that a transition from a particular spherical to a
of the tube, for exampley=cos(@r)e,—sin(r)e,. The local  particular planar structure is continuous means that the direc-
helical axes ar&iﬁép and ﬁzzcos(Jr)éd,Jrsin(qr)éz. The tor field changes continuously. The modeled intermediate
analysis of the local director with the twist pseudotensoroblate structure, characterized wigs= 6/R, must therefore
first introduced by Kilian and Sonndtl9], confirms the be chosen so as to continuously connect the particular initial
double twist character of the director field in the toroidal partspherical structure with the particular final planar structure.
of the droplet. The shape of tHé¢* surfaces results in the In other words, the intermediate oblate structure must yield
following general director field in the toroidal part of the the initial spherical structure far=0 and the specific planar
droplet[expressed in toroidal coordinates, see Appendix angtructure fore=1. The first impression is that the transition

Fig. 12(b)]: is complete where=1. It is true thate=1 defines a planar
structure, but it is not necessarily the desired final planar
n=coq Q(r,0,¢)]e,+sinQ(r,0,¢)]e,. (5)  structure—it does not necessarily have minimal total free
_ _ _ energy.
Locally the. director rotates about two twist axes with the  The first step in the transition is the change from a spheri-
corresponding wave numbers: cal (e=0) to an intermediate oblate structurex0). This

. transition is accompanied by the creation of the circle with
qlzﬁi y=— g sm(2Q) _ (6) radiu_s 5=_ eR i_n the center of the droplet. The director fi_eld
ar 2r(o+r sing) on this circle is used later as the “cornerstone” of the direc-
_ tor field in the entire droplet. In order to obtain possible
The first axis of rotation is, as expectegl, whereas the director fields on the central circle the boundary conditions at
second one is far less obvious and reads its circumference must be determined. Since the circle lies in
the bulkN* phase, the boundary conditions are not immedi-
ately obvious. Taking the assumption of obl&t& surfaces
to be valid in the entire droplet, the central circle can be
viewed as the oblat&l* surface with short axisl=0 and

€

_ (] Q)
(e+r sing) si 20

@l con Q)
I co co +%

e sin(2Q} Q) - R ]
+sinQ) #H—(eﬂ sind) e, long axesd+ 6= 6. Demandingn(r) to be tangential to the
or N* surface is thus equivalent to infinitely strong tangential
esin2Q) 90 . R anchoring at the circle edge. This is the same as saying that
—cod}y ————+r—-(efr sind) ey, the borderline of the circle is & line, where theg(r) field is

singular and thea(r) field is not[8]. The allowed director
The second wave number equals zero, if the structure ifields for a two-dimensional nematic bound to a circle are
spherical(i.e., §=0) or if Q(r)=N=/2 (whereN is an in-  well known, the most stable being the so-called monopolar
tege) which does not result in the chiral structures that areand bipolar structurgl6] (Fig. 3.

required. It follows that the twist free energy of oblate struc- Since no observations of discontinuous transitions be-
tures cannot be zero. tween different intermediate structures have been published,

At the droplet surfacelegenerate planar anchoring is as-those transitions are not taken into account in the forthcom-
sumed. Its strength is supposed to be finite, but still rathelng calculations. This implies that the transition is described
strong as in the experimental studies by Crooker and caby the initial spherical structure and appropriate intermediate
workers[1-3). In order to keep the calculations as simple asoblate structure which changes its shape, depending on the
possible, the director field close to the droplet surface is deapplied field. A description of such a transition is sufficiently
termined the same way as in the central parts of the dropletescribed by the functioa(E), which is yet to be calculated.
and is not adjusted to fulfill the boundary conditions. In re-
ality the director field near the surface is deformed in order 1. Construction of the director field
to minimize the total free energy. Since these adjustments Once the director field on the central circle is determined,
are difficult to include in the type of calculations performedthe director in the rest of the droplet can be calculated. The
here, no deviations of the director field at the surface argield of helical axes consists of straight lines attached to the
taken into account. The surface free energy is thus simplgentral circle and pointing outwards. For each pdrin the
added to the total free energy. _ droplet there is precisely one poiAt on the central circle

The total free energygf a particular structure is calculated such that a straight line alongj(f) connects them

in the following way. The free energy density is derived - | — . . .
analytically using the known director field. Then the integra—(qAB”AB)' The distance between the points determines the

tion of the free energy density is performed numerically. itangle of rotationa=qag-AB [see Fig. Z)]. Such a direc-
consists of the integral over the volume of the droplet fortor field satisfies the intrinsic twist along(r) in the entire
elastic and field contribution and of the integral over thedroplet. However, double twist cannot be avoided in the to-
droplet surface for the interfacial contribution. The elasticroidal part of the droplet. Since it is not possible to satisfy
free energy is a sum of splay, twist, bend, and core contrithe intrinsic twist in both directions, the twist contribution to
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G logical ‘ . f th llel di ical FIG. 5. Influence of stretching on the twist free energy. Stretch-
bIFI -4 Topo_oglcah trans orrw;non of tle Elara el diametrica ing of the director field of the parallel diametrical oblgfeDO)
oblate structure into the normal diametrical oblate structure. TOpgy,cqre results in the normal diametrical obl&@bO) structure.

the three-dimensional dl_rector _flelds on two typical chiral nematicr o corresponding twist free energy is increased due to unsatisfied

surfacegthe (a) parallel diametrical oblate structure afig normal intrinsic twist alongq(r), but the increase is relatively small durin

diametrical oblate structufeThe transformation is illustrated by X o a(r). . y . 9
the entire transition & e= §/R<1. For comparison, the twist con-

cross sections of chiral nematic surfaces gnlihes (bottom). The L . !

two s=% x lines are broken at the border of the central circle. ThentrIbUtlon of _the normal radial oblagNRO} structure |_s added. Note

each half of they line is rotated by 90° into the plane of the central that the twist free energy of the NRO structure is approximately
twice the twist free energy of the NDO structure. The same is true

circle. The rotateds:% x lines fuse into ones=1 y line. The . .
thickness of a defect line corresponds to its strength. For detailgOr the bend, splay, and core free energies. See Sec. Ill for details.

bout both di trical oblate struct Sec. Il C. . . . .
aboult bofh diametrical oblate STUCIres see e to which the director field has to be stretched. The stretching

the free energy is not identically zero. The application of thefaCtor’ defined this way, rotates parallel defect lifgarallel

above rule has the very important Consequence/\tmfect to the applled electric f|e|E) for 90° into_)tl’le normal defect
lines are normal to thBl* surfaces. A further consequence is lines (Fig. 4). The intrinsic twist alongg(r) is no longer
a condition that they lines in oblate structures must be nor- fulfilled in the entire droplet, but the calculations show that
mal to the central circle, since they originate from point de-the twist free energy is still close to the one obtained for the
fects on it. The resulting director field does not allow thenonstretched structur@ee Fig. 5.
defect lines in the plane of the central circle. On the other By choosing an appropriate director configuration on the
hand, defect lines in all experimentally observed oblatecentral circle and applying one of the above methods, oblate
structures lie perpendicular to the applied electric field, i.e.structures withy lines perpendicular or parallel to the ap-
they lie in the plane of the central circle. plied electric field can be modeled. Only perpendicular
Therefore a slight modification of the above director fieldlines were observed in oblate structures and only perpendicu-
is made. The madification has to be such that defect linedar or parallel orientation of lines in spherical structures in
parallel to the field(i.e., normal to the central cirdleare low electric field was found to be stalle]. Therefore mod-
rotated for 90° to be in the plane of the central circle. Ineled director fields of intermediate structures represent a suf-
other words, the director field above and below the centraficient set to describe all possible transitions from spherical
circle should somehow be expanded to the rest of the dropleto planar structures.
An example of such a transformation is given in Fig. 4. At this point it should be stressed that as far as defect
Representing alN* surface with an elastic surface—this is lines are concerned there is a very important difference be-
due to elasticity of the nematic liquid crystals—one cantween the previous and the improved model. For the previ-
imagine a stretching of the director structure on a circleous model, the infinitely strong parallel anchoring resulted in
above(or below the central circle over the toroidal part of topological equivalence of the cutoff part of thE surface
the sameN* surface to its equator. Taking the stretchingwith a circle and further to the formation of point defects at
factor to be constant for the entid* surface makes it pos- the edge of the cutoffi* surface. These point defects form
sible to describe the process in a mathematical language. Theng surfacey lines which increase the elastic free energy a
director field above and below the central circle is calculatedot. On the other hand, in the improved model the surface
as before, takingi(F) parallel to thez axis, which points Qefe_ct lines are removed because the anchoring is no longer
along the electric field€. The director field, calculated this infinitely strong.

way at a certain point,, has to be moved to a poinftz, C. Particular cases
according to the stretching factor '
To get planar structures from spherical ones, there are
o+md/2  wd several possibilities, depending on the initial spherical struc-
5 +ﬁ' @) ture and its orientation in electric field. There are three
spherical structures with relatively low free enelfdy] but
where é is the central circle radius andl the distance be- only two were observed experimentall$,20]. Usually the
tween a particulaiN* surface and the central circle. For so-called radial spherical structuierank-Pryce moddl21])
d=0 no stretching is needed, because Mie surface does is observed in the absence of the electric field. This structure
not have a toroidal part, and more and more stretching ibas a singles=2 y line that extends from the center to the
needed adl is increased and there is more of a toroidal partdroplet surface. A low electric field does not result in struc-
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tural changes of the director field, but the radial defect line
tilts into position normal to the field3,9]. The other ob-
served structure is the so-called diametrical structure with a
singles=1 y line which extends from one pole to the other.
In low electric field the defect line tends to be either parallel
(stable orientationor perpendiculafmetastable orientation a)
to the applied field.

This gives three experimentally possible initial spherical FiG. 6. Schematic three-dimensional presentation of the director
structures, stabilized by the low electric field. Each of themfield in the NRO structure fos=R/2 andqR= 2. Several chiral
evolves in its own way, giving three intermediate oblatenematic surfaces are show) the central circle(b) the N* sur-
structures. The structures are named after the position of thface withd=R/4, and(c) the N* surface withd=R/2. The corre-
defect lines with respect to the applied electric field and aftesponding angles of rotation of the director are2, and, respec-
the spherical structure they originate from. Detailed mathdively.
ematical description of director fields of intermediate struc-

tures is given in the Appendix. Fig. 4. Then both halves of ths=1y line fuse, the

s=1 y line appears, and the normal diametrical oblate struc-

ture shows up. The described topological transformation
This structure appears when the diametrical sphericatonfirms the similarity between the two structures, but en-

structure is in its stable position in low electric field. In high ergy considerations are required to determine whether or not

enough field the central circle with a bipolar structure is cre-such a transition is really possible.

ated and thes=1 y line splits into twos=3 y lines which

remain parallel to the applled field. Each defect line pen- 3. Normal radial oblate structure

etrates the central circle in @ 3 point defect, characteris-

tic for the two-dimensional bipolar structure that builds up

on the central circl¢Fig. 3@)].

1. Parallel diametrical oblate structure

The third oblate structure originates from the initial radial
spherical structure. In low fields the=2 y line is stable
when it is normal to the applied electric field. When the field

Construction of the director field ithe parallel diametri- . L . ) )
cal oblate(PDO) structure is the simplest one. It is obtained Increases sgfﬁuently, the gentral circle with monopolqr di-
rector field is createdlsee Fig. 8)] and the former radial

by the first method, described in the Sec. Il B 1. According A .
to the bipolar structure on the central circle the distance begiefeCt line is attached to its border. Because of the normal

. ; . defect line let this structure be callékle normal radial ob-
tween the two defect lines equal$ 2nd they lie symmetri- X . .
cally with respect to the center of the droplet. With increas—latf (,k;lIRtO) sttructture. tﬁs in the (cj:ase t?]f t(;“? norm(;alltdlamettn- t
ing 6 they get shorter and shorter and finally disappear on th a gir a te rsﬁrulcc:j lljr:eth derseIC?nThmeh or 'f lrjiseih'n Ovsict)rr:s ruc
droplet surface fos=R. Length of each line is gR?— &6°. € director 1ie e droplet. The characterigtione

There are no surface defect lines as in the previous modeZ,Hffgg;h\SNTé é‘j;le:%téﬁ;méaggd g::ﬁfa?%ﬁ gftttr?: c(ijiigg'lcgtr
because of the finite anchoring strength. - P

field for this structure is given in Fig. 6.

2. Normal diametrical oblate structure

If the initial orientation of the diametrica} line is per- Il TRANSITION

pendicular to the field, the line breaks in two parts separated To obtain the stability diagrams of the structures their free
with the central circle of radiué. The two lines are naturally energy has to be determined. Since the model director fields
still perpendicular to the applied field. Let this structure beare known the free energy is in principle easy to calculate.
callednormal diametrical oblat¢dNDO) structure.(A better  The bulk part is an integration of the bulk free energy den-
name would probably be perpendicular diametrical oblatesity, whereas the surface contribution is a surface integral of
structure, but this would lead to the abbreviation PDO, whichthe surface free energy density. There are, however, some
is the same as for the parallel diametrical oblate struoture. numerical difficulties, related to a relatively time consuming

Since the defect lines in this structure are in the plane otomputation. The total free energy is obtained in the follow-
the central circle the second method must be used to coring way.
struct the director field in the droplésee Fig. 4. The struc- The surface contribution results from a nonparallel align-
ture on the central circle is again bipolar aswl1 x lines lie  ment of the director at the droplet surface, as described in
symmetrically with respect to the droplet center. Each lineSec. Il A. The surface free enerdigq. (2)] is rewritten as
has lengthR— § and disappears on the droplet surface when
o=R.

The normal and parallel diametrical oblate structure are Wo . . R|?
somewhat similar although this is not obvious at first glance. 2 ds
Nevertheless, one structure can be continuously transformed
into the other by the procedure of stretching, described in the
Sec. Il B 1. Let us start with a parallel structure. The points The bulk contribution is composed of two parts, an elastic
where defect lines are attached to the central circle are kepiart due to deformed director field in the droplet and a field
fixed, but the “upper” and the “lower” half of thes=13 y part due to dielectric anisotropy of ti& phase. The elastic
defect line are rotated into the plane of the central cifgse  free energy density has the usual Frank form

®
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ST R where ¢ is the average conductivity of liquid crystal and
ferasic=——(V-n)"+—=-[a+n-(VXn)] opy IS the conductivity of polymer matrij22].

The integration of the free energy density is performed
numerically. There are no problems with the surface, field,
and twist contributions, but bend and splay free energy den-
sities diverge in the vicinity of lines. The isotropic cores of

_K_24v§’.[ﬁx('§’xﬁ)+ﬁ(v§.ﬁ)] 9) defects are introduced to overcome this difficulty, but the
2 ' numerical integration remains quite problematic because of
the rapid changes of the free energy in the vicinity of these
whereK 11, K,,, K33, andK,, are the splay, twist, bend, and cores. Therefore an iterative integration method is used. The
saddle-splay elastic constants, respectively, ga®=/P is  starting mesh of points used for integration is given, but in
the intrinsic wave number of tHe* phase. The saddle-splay the regions of rapidly changing free energy new mesh points
free energy contribution is zero for all spherical and plana@re added in order to reduce the influence of each mesh
structures and relatively small when compared to the splapoint. This is the most important advantage of the analytical
and bend contribution for oblate structures. Therefore it igorm of the director field and free energy density. The free
not included in the forthcoming calculations. Assuming thatenergy is calculated for the values of parametein the
the electric field inside the droplet is equal to the appliedinterval from O to 1. Calculated contributioribend, field,

Kaz - - -
+733|n><(V><n)|2

electric field, the field free energy density is and surfacgare then expressed with appropriate analytical
functions that fit numerically obtained values the best.
> 2 Each contribution to the free energy can be separated into
ffiels= — 3€0€a(N-E)?, (10 9y P

two parts. The first one describes the average behavior of the
function while the other one, which is smaller than the first
one, reflects the periodic structure in the droplets. The latter
Bne is sinelike modulated with a wave numbey, &here the

where e,=¢|—&, is the dielectric anisotropy of th&*
phase. Assumption of homogeneous electric field may be

very crude estimate, as the director field varies considerably, .., > is a consequence of the head-tail symmetry of the

over droplets. And even if the assumption of homogeneouaemaﬂc phase. The core and twist contributions to the free

field inside the droplet is acceptable, the field inside theenergy do not have the modulated part, and the influence of

droplet is not necessarily equal to the applied one. Since thge mogulated part on the surface free energy is negligible,
groplets ﬁre corrllfmed toa polymerdmlatnx., which does no'i:ompared to the average behavior and numerical uncertainty
ave to have the same average dielectric constant as thg o resyits. On the other hand, modulations of the splay,

N* phase, the field in the droplet is connected with the ﬁe'%end and field free energy are clearly visible and not
in the polymer matrix. As an estimate, the droplet in the i

: ) . = -negligible—the relative amplitude of oscillations is up to
matrix can be considered as a uniform sphere with dielectri 919 P P
constant equal to the average dielectric constant of\the

phases. If it is further assumed that the conductivities of the

polymer matrix and liquid crystal are negligible, that the

droplets are not very close to each other—this is opposite tfhe one elastic constant approximation is employed, because
the requirements of the applicatioffs}—and that the elec- o gpjay and bend contribution add to a nonmodulated func-
trodes are far enough apart, the electric field in the droplet iy \vhen the corresponding elastic constants are set equal
approximately equal, (K11=K33). Only the field free energy is described with both
_ average and modulated functions. This makes the calcula-
E'~ 3 = & (11) tions as simple as possible, but on the other hand the descrip-
k+2 ' epm’ tion is complete enough to explain the steplike behavior of
the transition.
whereE’ is the field in the drople the field in the polymer In order to quantify the sinelike modulation, the field con-
matrix away from the drop|et, arﬂDM is the dielectric con- tribution is first described with a pOlynomial function, which
stant of the polymer matrix. If both dielectric constants aredescribes the average dependenceeomNext the optimal
approximately equal{=1) the electric field in the droplet Polynomial function is subtracted from the numerically cal-
can be taken equal to the applied electric field. This furthefulated field free energies and the difference is approxi-
means that the field in the droplets is not affected by thénately —described with a function of the form
neighboring droplets, since the field in the matrix is notA(€)sin(ZiRe), where amplitudeA(e) is again polynomial.
changed. Otherwise the electric fiditithat enters the free The error, obtained when subtracting two large, almost equal
energy expressions must be replacedBy On the other numbers, which carry their ow{in this case numenc}abrror
hand, if the conductivity of the polymer matrix and liquid 1S known to be large. For example, if the amplitude of the
crystal is not negligible, the electric field in the droplet is modulation is as much as 5% of the optimal polynomial

approximately related to the app“ed low frequency e|ectricfuncti0n, then the relative errors, made by Subtraction, are
field as more than 20 times larger than the numerical errors, made by

numerical integration. Therefore the amplitudée) is de-
3 — rived with a considerably larger uncertainty than the polyno-
;;Ei’ (12)  mial that describes the average behavior of the field free
K+2 Opm energy contribution. That is why the steplike behavior of the

90%. For all three contributions the amplitude of the sinelike
modulation becomes smaller with increasingAs expected,
another important feature is that the modulation gets smaller
with increasing chirality, i.e., with increasing. Hereafter
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TABLE I. Fitted free energies in the high chirality limigR=60s) and one elastic constant approxima-
tion: K ;=K ,=K33=K=5Xx10"*2 N. The radius of the droplet equais=10 xm and the dielectric anisot-
ropy equalse,=—5. All free energies are given in the unitsKR. The electric field is normalized with
respect to the electric field,, which results in an electric coherence length that is equal to the droplet radius
&:(Ep) =R, E(=0.0336 V/um. Since the surface and field free energies of the three structures are equal
within numerical error, only two analytical functions are needed to describe the surface and field free energy
contributions for all three structures.

Contribution Free energfunits of 7KR)

Elastic: PDO 13.01+ 10.58 — 3.6082— 7.983°3— 9.1553%e 1 4. 1 178 400
Elastic: NDO 14.993-6.372+5.0285%%— 6.1055°— 6.6143%<~ 1
Elastic: NRO 27.178-16.29%+ 13.305%— 12.86Q:3— 8.17e?X~ 1)
Field (0.221 34 0.178&—0.273%%+0.22%%) X (E/E)?
Surface €2(0.3194+ 0.3555)X (RW; /K)

transition should not be taken too quantitatively. There isgR=60m, 20w, and 1Q@r. The overall behavior does not
clearly a steplike transition in question, but whether a parchange much for the three chiralities, but there is a qualita-
ticular step occurs at slightly higher or lower electric field istive change due to sinelike modulation of the field contribu-
beyond the accuracy of the calculations presented here. tion to the free energy, which is more pronounced for smaller
The resulting analytical functions are used to write downg.
the expression for the total free energy of the particular ob- Finally, the influence of surface anchoring is studisee
late structure as a functiofi(e,E). To predict a physically Fig. 9. With stronger surface anchoring the threshold field
meaningful state, the free energy must be minimized folincreases and the transition is completed at a higher field.
given electric fieldE. Therefore the derivativéF/de must  Such a behavior is expected, since the transition is mainly
be zero. This yields a relatioe(E), but for practical reasons governed by the competition between surface and field ef-
the inverse functiofE(€) is calculated. Once this function is fects, whereas the bulk elasticity is important only at the
known, the total free energy for a particular oblate structurébeginning of the transition. For example, the anchoring
can be compared with the free energy of the correspondingtrengthW,=2x10"% J/in? (see[14]) makes the maximal
spherical structure to obtain the stability diagram. The totakurface contribution, which is reached in planar structures,
free energy of spherical structures can be obtained by settingqual to approximately 27KR. On the other hand, maxi-
e=0 in the expressions for the oblate structures. In additionmal elastic free energy is realized in spherical structures, in
it can be obtained analytically for equal elastic constants. Foparticular, in the radial spherical structu@,10], where it
illustration of the above reasoning the parts of the analyticabquals approximately 27KR. It is instructive to realize that
function F that describe particular contributions to the freethe electric field contribution foe,=—5 andE=1 V/um
energy for the casgqR=60x are written in Table I. Note would equal approximately 26fKR for spherical structures,
that there is no modulated part in the expression for the fieldf they were still stable.
free energy. This is a consequence of high chirality: the am- As stated above, the balance between electric and surface
plitude of the modulated part is smaller than the numericaforces mainly governs the structural transition. Therefore the
accuracy.

o/R
IV. RESULTS 1.0F

In this section the above described procedures are used to
describe in detail the field induced transition in chiral nem- 08fF 1
atic droplets. First, in the high chirality limitqR=60),
transitions via all three intermediate structures are compared. 0.6F ]
The amplitude of the field free energy sinelike modulation is
here so small that steplike behavior is no longer visiske 0.4F qR=607: 1
Fig. 7). The threshold values for all three structures, as well — PDO
as the growth of the central region as a function of the field 02k / __.NDO -
are similar, but in detail the behavior of the PDO structure is // — NRO
qualitatively different from the behavior of the other two . . .
structures. Free energy calculations show that the PDO struc- 0~00 1 2 3 4
ture with a small nonzere(~0.009) has lower free energy E [V/ium]
than the corresponding spherical structure even at zero elec-
tric field. Nevertheless, the growth f starts at approxi- FIG. 7. Comparison of the transition for three possible interme-
mately the same threshold electric field for all three strucwiate structures: parallel diametrical oblate, normal diametrical ob-
tures. late, and normal radial oblate structure. The behavior of the three

Next the influence of chirality is studied. In Fig. 8 the differs mostly at the beginning of the transition, whereass/R
transition for each intermediate structure is drawn forbehaves similarly for all three at intermediate electric fields.
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FIG. 9. Influence of the anchoring strength is presented. Theo-
retical curves are calculated in the one elastic constant approxima-

(1)'8 3/R tion: R=207, R=10 um, ;= —5, K=5x10"*?N. The anchor-
) ing strength is written on each curve in m3/m comparison with
0.8} 1 the experimental observations parallsfiuaresand perpendicular
(circles to the field, made by Kitzerow and Crookgs], indicates
0.6f NRO l that the anchoring strength should YWg=0.2—-0.4 mJ/rh
0.4}
ergy in a reasonable amount of time the accuracy is limited
0.2 1 to 1%.
0.0 (b) Model limitationsare most pronounced for smadls,

0 1 b? [V/ﬂn“:’] 4 5 especially for both normal oblate structures, because of our

procedure, where the director field in the entire droplet is
obtained from the director field on the central circle. First of

FIG. 8. Upper diagram shows the transition curve for the planar, . . . .
diametrical oblate structure, the middle that one for the normalall’ the deformations on a circle with a radidslose to the

diametrical oblate structure, and the lower one that for the norma?Ore radius are strong and the variations of the scalar order

radial oblate structure. On each diagram the curves for three diﬁergarameter should be included in the calcu!ations of director
ent chiralities are showmR= 107 (the thickest ling qR=207 field [23]. Second, for a smalb the stretching factofEq.

(line of medium thickness and qR= 60z (the thinnest ling For (7)] is much greater than 1. As a consequence, any discrep-
the highest chirality §R=607) the sinelike modulation of the field ancy between the actual and modeled director field on a cen-
free energy is too small to make a reliable fit. Therefore the transitral circle will result in a much larger discrepancy in the rest
tion curve is smooth. For all three structures the transition curves d@f the droplet. In the limite—0 the stretching factor di-
not move due to different chiralities, but their shape changes—th&erges, indicating that modeled director fields for snel
steplike behavior is a direct consequence of the sinelike modulatioare not reliable. Indeed, the numerically integrated elastic
of the field free energy contribution and is more pronounced forfree energies of both normal structures for 0 are about
smaller chiralities. 6% larger than the analytically obtained ones. This simply
means that models for normal oblate structures do not trans-
shape of the transition functiar{E) depends not only on the form into corresponding spherical structures for0, al-
anchoring strengthV, (see Fig. 9, but also on the dielectric though the small difference in free energies shows that the
constants ofN* phase and polymer matrix. The correspond-discrepancy is not large. On the other hand, for equal elastic
ing parameter is proportional to the ratio between the surfaceonstants, the elastic free energy density of ¢#e0 PDO
and field free energyk=1 this meanswW,/(R|e,]). The structure transforms into the free energy of the diametrical
radius of the droplet enters the expression due to the fact thapherical structur¢10], confirming that the two structures
the surface contribution is proportional R? and the field are really the same. The other limitation of the model shows
contribution toR3. up at the end of the transition. When=1 all N* surfaces

A general remark about the limitations of the derived freeare parallel and the electric free energy is zero. Therefore the
energies and resulting transitions should be made at thidirector field in the droplet depends on the competition be-
point. There are two reasons for limitations: the first is due tdween surface and bulk elastic forces alone, but there are no
the model itself, the other is a consequence of numericdopological constraints, because there are no cldsedur-
calculations. faces. The model is, however, based on cldsé&dsurfaces,

(a) Numerical precisions not critical for the surface and so the final planar structures are not described adequately.
field free energies as their densities change very smoothlyherefore it is possible that the transition is not continuous at
without sharp peaks. A starting three-dimensional mash ofthe end. The conclusion of the above considerations is the
approximately 10&100x 100 points results in an error following. Transitional structures are optimally modeled for
smaller than 0.1%. Problems arise when the elastic free eparameters in the middle of the interval0,1], whereas at
ergy density, which has singularities in the vicinity of the the limits of the interval, in particular for smadl the models
defect lines, is integrated. In order to calculate the free enare less reliable.



2934 J. BAJC AND S. IMER 55

The analytical director fields developed here and the result-
ing evolution of the transition with applied electric field are
in reasonable qualitative and quantitative agreement with the
experimental datd3]. It is proved that the transition is
mainly governed by field and surface forces. In other words,
the threshold electric field as well as the evolution of the
intermediate oblate structures are characterized by the pa-
rameterW,/(R|e,|). This gives an opportunity to determine
either dielectric anisotropy, or anchoring strengthV, if

the other is known. For example, assumirg=—>5,
K=5x10"'?N, andR=10 um, the anchoring strength is
estimated to b&V,=0.2—0.4 mJ/n? (see Fig. 9. The ob-
served steplike behavior can be qualitatively explained using
a model with sinelike modulation of the electric part of the
free energy, which is related to the periodicity of structures
in chiral nematic phase.

Although the calculations are performed in the one elastic
constant approximation, generalization to the nonequal elas-

FIG. 10. Simulated textureeft) are compared with the experi- tic constant and inclusion of the saddle-spl#,4) term is
mental onegright). In the upper figuréa) the droplets are observed possible even with the very same model, as long as the splay
in the direction perpendicular to the applied electric fiEldcom- (K1) and bend K33) elastic constants are not too different
pare with Figs. fo) and Zc)]. One chiral nematic surface is drawn from each other. That limitation is a result of the construc-
in the experimental micrograph to “guide the eye.” In the lower tion of the director fields, which originate from a director
figure (b) the viewing direction is parallel to the applied electric field on the central circle that is calculated for equal elastic
field. A flat central region is clearly seen: its radigsis about  constantysee the Appendix Strong variations of the ratio
one-quarter of the droplet radiisin the upper figure and one-half petween bend and splay elastic constants, sudadiver-
of the droplet radiuR in the lower figure. gence on approaching the nematic-smectic transition, would

certainly require a different form of the director field on the
central circle.

In order to verify the structures form another point of  The electric field inside the droplet is treated as homoge-
view, simulations of the polarizing microscope textures areneous, which might be a crude estimate, but good agreement
compared with the textures observed by Kitzerow andyith the experiments confirms that possible nonhomogene-
Crooker[3]. An example for normal radial oblate structure jties do not influence the transition significantly. Neverthe-
with €~0.5 is presented in Fig. 10. The simulations arejess, the change of the electric field strength in the droplet
based only on polarization rotations and phase shiftsgye to mismatching of dielectric constants of polymer matrix
whereas the diffraction effects at the droplet surface are igand liquid crystal is taken into account.
nored because the studied droplets are large enough. In order Finally, it should be mentioned that in real systems, the
to simulate a black and white photograph textures for differradial structures occur much more frequently than the dia-
ent wavelengths are weighted and combined into a singlghetrical oneg3,20]. On the other hand, the above calcula-
gray scale figure. The combination corresponding to the relagons show(see Fig. 5 that the elastic free energy of the
tive sensitivity of the photographic film [24] 470 nm, 20%;  radial structures is approximately twice as large as the elastic
535 nm, 60%; and 600 nm, 20%. For a detailed descriptiofree energy of the diametrical structures. This discrepancy

of the calculation of I|ght transmission and textures in IIQUId between experimenta| observations and theoretical predic-
crystals sed24,25. The simulated textures show excellent tions remains to be explained.

agreement with experiments and confirm that our calcula-

tior}s are correct with!n the framework of the Iimitations de_— ACKNOWLEDGMENTS
scribed above. The distance between successive dark or light
fringes in Fig. 10b) is approximately one-half of the pitch. Financial support from the Ministry of Science and Tech-

nology of Slovenia(Grant No. J2-706)7and the European
V. SUMMARY Union (Project No. CIPA-CT93-0159s gratefully acknowl-
’ edged. The experimental pictures in Fig. 10, similar to those

In this paper, continuous structural transitions in a spheriin [3], were kindly provided by Peter Crooker.
cal chiral nematic droplet under the influence of an electric

field are studied theoretically. In particular, the intermediate

structures are m0(_jeled with op!ate chiral nematic surfgces APPENDIX: DIRECTOR FIELDS
that enable a continuous transition from low-field spherical
to high-field planar structuresee Figs. 2 and 10Further, As described above, the director field in a droplet is de-

analytical expressions for director fields of intermediatetermined by the director field on the central circle of radius
structures are developddee Figs. 4 and 6 and the Appen- & (Fig. 3) and one of the described procedures which corre-
dix). The procedure is based on the known director field orsponds to defect lines parallel or perpendicular to the applied
the central circle and chiral character of the liquid crystal.electric field. In this section the director fields for all three
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n=

This director field is an exact solution for equal elastic con-
stants and was obtained, for example[1d].

The monopolar director fieldhas one point defect
(s'=2) at the border of the circle. In this case the director
field is obtained from the known solution for the bulk case
s=2 and equal elastic constants. In an unconstrained two-
dimensional nematic the director field near the 2 point
defect can be represented as a family of circles with one
common point. If this point is placed at the border of the
central circle and the entire director field is rotated so that
one of the director field's circles coincides with the border of
the central circle, the monopolar director field showq sge
ig. 3(b)]. The director field in cylindrical coordinates reads

FIG. 11. Coordinate systems used to write down the directorF
field in the droplet:(a) cylindrical coordinate system for the flat

region x*>+y?<4%) and (b) toroidal coordinate system for the 2_ 82\co 24 2Vsind—26
curved region of the dropletx¢+y?>6). The radiusé of the flat n= (p ) s{q.ﬁ) *p (p )sing : p §¢_
central region is drawn in they plane. 5%+ p%—268p sing 5%+ p?—268p sing

(A2)

studied oblate structures are calculated. In order to present

the director field as clearly as possible appropriate coordinate 2. Oblate chiral nematic surfaces
systems are chosen: cylindricad,,z) for the flat central
region of the droplet and toroidaf (6, ¢) for the rest of the
droplet(see Fig. 11

The director field at a particular poiBton theN* surface
is obtained by appropriate rotation of the director at point
A on the central circlgsee Fig. 2b)]. In the director fields of
normal oblate structuredNDO and NROQ, stretching of the
director field is necessary to get defect lines in the plane of
the central circle. Note that in the flat region the director does
. . . ) _ ._not have az component and that in the curved region the
The two-dimensional director field on the central circle IS girector does not have an component(in toroidal coordi-
dgtermined by the infinitely strong parallel anchoring at thenate$. This is a natural consequence of the shape of the
circle border due to tha defect line at the border. This  nN* syrfaces. Note further that the director field on closed
line is a direct topological consequence of the shape of thgq cutoffN* surfaces is obtained with the same procedure
N* surfaces and is therefore unavoidable. Therefore the amhecause the director field is not altered in the vicinity of the
choring at the border of the circle is infinitely strong and alsodroplet surface.
the sum of the defects’ strength on the circle equals 1. Two The parallel diametrical oblate structuris the simplest
possible director fields on the circle are of interest. one, since no stretching is needed. The director field in the

The bipolar director fielchas two point defects of equal flat region is obtained by a rotation of the bipolar director
strength, lying diametrically opposite to each otfege Fig. field on the central circle,
3(a)]. Any point defect at the border of a two-dimensional
nematic can be treated topologically as an intetmrlk) or

1. Central circle

sin(¢—qz)— easin(¢+qz2) 5

border(surface defect. The distinction between the two de- n= J1+ 0%+ 202c0s2%) p
scriptions is that if a defect is surfacelike, only one-half of it P P
is actually inside the nematic phase. That is why the director cos ¢—qz)+e3cog ¢p+qz) -

field of a defect with the interior strength pushed to the €y, (A3)
border, looks like the director field of a bulk defect with the
strengths’ =2s. As the sum of the bulk strengths of the
defects on the circle equals 1, the bipolar director field iswhereppr=p/§ is a dimensionless radial cylindrical coordi-
characterized by two surface defects with strergjth 1 or  nate, normalized with respect to the radifi®f the central
equivalently two bulk defects with streng#is 3. As far as a circle. The indexP stands for “parallel.” The x lines
mathematical representation of the director field is concernedith  bulk strength s=3 consist of the points
there is no difference between the two descriptions. In th§(p=8,z,¢=*=w/2)} and are parallel to the axis, i.e., the
cylindrical coordinate system the director field of the bipolardirection of the applied field. The director field in the curved
structure reads region is even simpler,

V1+0p+205c042¢)
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ﬁ=—sin(qr)§0+cos(qr)é¢, (A4) . sin(¢—qr)— 7%(r,0)sin(¢p+qr) -
n=
VI+7(r,0)+ 271, 6)cos2)
and obviously does not have any defects. _ 2
The normal diametrical oblate structuaiginates from a + cos¢—an+ n7(r.)cod +ar) s, (AB)
bipolar structure on the central circle, similar to the PDO V1+7%(r,0)+29%(r,0)cod2¢)

structure, but here the defect lines lie in the plain of the h — (26421 O)/(2 is th di
central circle, i.e., normal to the applied electric field. TheWhere 7(r,0)=(2e+2rg)/(2e+ar) is the corresponding
director field at point8 does not originate from the same stretching factor in the curved region of the droplet. Note

point A on the central circle as for the PDO structiisee that » is chosen in such a way that it equals 1 for /2,

Fig. 2()], but from a point closer to the circle center due toi'e" the directpr_ field at the bord_er o_f the central (_:ircle is
the stretchingsee Eq(7) and Fig. 4, involved in the con- used as the origin of the director field in the equatorial plane

) ; ' ) . of the outer region of the droplet with the curvétf sur-
struction of the director field. The result in the central regiong, oo They lines with bulk strengtis=1 can be represented

IS as the point{(r, 0= 7/2,¢=+ w/2)}.
The normal radial oblate structures obtained from the
) 5 . monopolar director field on the central circle with the proce-
e sin(¢—qz)—e\sin(¢+qz) : dure analogous to the one used for the NDO structure. In the
\/1+Qﬁ+29,2\,cos(2¢) p c_entral region the resulting director field in cylindrical coor-
dinates reads
cod ¢—qz)+e3cog dp+qz) - .
4 j‘f DGR, s 0Reos+a2)-c034-02) 4200102
+0oNtT20KC082) 1+ 02— 20psing p
2 . . _ _
wherepoy=pn(2)/ 4 is a stretched dimensionless radial cy- + ensin(¢+02) +sin(¢—aqz)—2enc0d92) e
lindrical coordinate, normalized with respect to the radfus 1+ Q,Z\,—ZQNSind) ¢

of the central circle. The indeX stands for “normal” and

n(z)=2el/(2e+ m|z|) is the corresponding stretching factor (A7)

in the flat central region. In the outer region the director field,where the abbreviatiogy was introduced in the preceding
written in toroidal coordinates, reads paragraph. For the curved region the director field is

7°(r,0)cod p+02z) — cog ¢ —q2)+27(r,0)sin(q2) 5
1+ 5%(r,0)—29(r,0)sing

7°(r,0)sin(¢+qz) +sin(p—qz)—27(r,0)codqz) -
+ > - €4, (A8)
1+ %“(r,0)—25(r,H)sing

n=

0

where 7(r,6) was again introduced in the preceding para-flat part of the droplet by the following substitutions: the
graph. variablep\ is replaced byz(r, 6), the cylindricalz compo-

The comparison between the director field in the ftat nent of the director becomes the toroidatomponent of the
lindrical) and curvedtoroidal) region of the droplet reflects director, the cylindrical¢ component of the director be-
the procedure that was used in the construction of the direaczomes the toroidalp component of the director, the cylin-
tor field. Let us briefly summarize the procedure. The toroi-drical p component of the director becomes the toroidal
dal part of the director field of both normal oblate structurescomponent of the director, and the cylindrical coordiraie
(NDO and NRQ is obtained from the director field in the replaced by the toroidal coordinate
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